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1. OVERVIEW

Coneisely: INDSCAL-S (INDividual Differences SCALing: Short version)
provides internal analysis of a three-way data matrix consisting of a
set of (dis)similarity matrices, by a weighted distance model using a

linear transformation of the data.

Following the categorisation developed by Carroll & Arabie (1979)

the program may be described as:

Data: Three-way Model: Weighted Euclidean
Two mode Two sets of points
Dyadic Internal/External
Linear
Unconditional
Complete

One replication

1.1 ORIGIN, VERSIONS AND ACRONYMS

INDSCAL was developed by J.D. Carroll and J.J. Chang of Bell
Telephone Laboratories. The original INDSCAL program performed two types
of analysis: INDIFF, which is the most commonly used part of the program
and often referred to simply as INDSCAL, and CANDECOMP. It is this former
analysis (the INDIFF option) which comprises the present program
(INDSCAL-S). The CANDECOMP option appears as a separate program within
MDS(X). The present program is specially adapted from the 1972 version
of INDSCAL.

A quasi non-metric INDSCAL known as N-INDSCAL exists but is though

to be unstable.

In what follows we shall follow the convention of referring to the

model as INDSCAL and this program as INDSCAL-S.
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1.2 INDSCAL IN BRIEF

INDSCAL was originally developed to explain the relationship
between subjects' differential cognition of a set of stimuli. Suppose
that there are N subjects and p stimuli. The program takes as input
a set of N matrices each of which is a square symmetric matrix (of
order p) of (dis)similarity judgments/measures between the p stimuli.
The model explains differences between subjects' cognitions by a variant
of the distance model. The stimuli are thought of as points positioned
in a 'group' or 'master' space. This space is perceived differentially
by the subjects in that each of them affords a different salience or
weight to each of the dimensions of the space. The transformation which

is assumed to take the data into the sclution is a linear one.

1.3 RELATION TO OTHER MDS(X) PROGRAMS

The INDSCAL model is a special case of the PINDIS hierarchy of

models.

INDSCAL is also a special case of CANDECOMP where the second and
third 'way' of the data matrix are identical. In the Carroll-Wish
terminology INDSCAL is three way, two mode; CANDECOMP three way, three

mode (actually N-way, N-mode where 3 < N < 7).



2. DESCRIPTION

2.1 DATA

Imagine that a group of subjects is asked to assess the
dissimilarity between a set of objects. It is inevitable that these
judgments will differ. The problem then arises of the relationship
between the sets of judgments. The INDSCAL model assumes that subjects
are systematically distorting a shared space in arriving at their
judgments and it seeks to reconstruct both the individual private

(distorted) spaces and the aggregate ''group' space.

There is no reason why the judgments of (dis)similarity should
come from "real" individuals. They may be different occasions, methods,
places, groups etc., in which case they are often referred to as

'pseudo-subjects’'.

The mode of distortion which the INDSCAL model proposes is this.,
The basic, shared configuration (known as the Group Space in INDSCAL)
has a given number of fixed dimensions. In making their dissimilarity
estimates different subjects are thought of as attaching different
salience to different dimensions. Thus, for instance, in judging the
differences between two houses an architect might primarily distinguish
between them in terms of style, whereas a prospective buyer might attach
relatively little weight to that aspect but a great deal to the difference

in price.

2.1.1 Example

Suppose we were interested in how people perceive the distances
between 6 different areas of a city, and asked them to give their estimates
of the distance between each of the pairs of areas (fifteen in all).

These estimates we collect into three lower-triangle matrices as follows:
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3.6 Subject 1

6.7 9.2

7.0 3.1 3.1

6.0 4.1 3.0 3.1

4.1 5.0 3.6 6.7 4

5.7 Subject 2
7.3 9.4

7.1 3.3 4.3

6.0 4.2 4.2 3.3

5.7 6.4 4.6 7.3 4

7.3 Subject 3
9.0 12.0

9.9 4.3 3.3

8.4 5.7 3.0 4.3

4,2 5.8 4,1 9.0 5.6

The fifteen judgments of each subject are collected into the
lower triangle of a square symmetric matrix which would be submitted

to INDSCAL-S as shown in section 4.1

2.2 MODEL AND ALGORITHM

The INDSCAL model interprets ‘'individual differences' in terms of
subjects applying individual sets of weights to the dimension of a common
'group' or 'master' space. Hence the main output of an INDSCAL analysis
is a 'Group Space' in which the stimuli (in our example, the area
locations) are located as points. The configuration of stimuli in this
Group Space is in effect a compromise between different individuals'
configurations, and it may conceivably describe the configuration of no

single individual.



Complementing the Group Space is a 'Subject Space'. This space has
the same dimensions as the Group Space but in it each individual is
represented as a point, located by the set of co~ordinates which are the
values of the numerical ‘weights' which he assigns to each dimension.
These individual weights or saliences are solved for by the program and

are its next most important output.

Thus the subject whose individual cognition corresponds exactly
with the "groﬁp space configuration'" - 1f that subject exists = would
be situated in a two-space on a line at 45° between the axes, whereas
someone who paid no attention to one of the axes would be situated at

zero on that axis.

Having obtained the 'Group Space' and an individual's set of weights,
it is often useful to take the Group Space Configuration of stimuli points
and transform it into that individual's 'Private Space'. A Private Space
is simply the Group Space with its dimensions stretched or contracted by

the weights which that subject has assigned to them.

2.2.1.1 Some properties of the INDSCAL model

It should be noted that INDSCAL produces a unique orientation of the
axes of the Group Space, in the sense that any rotation will destroy the
optimality of the solution and will change the values of the subject
weights. Moreover, the distances in the Group Space are weighted Euclidean,
whereas those in the private spaces are simple Euclidean. Because of this,
it is not legitimate to rotate the axes of a Group Space to a more
'meaningful' orientation, as is commonly done both in factor analysis and
in the basic multidimensional scaling model. It has generally been found

that the recovered dimensions yield readily to interpretation.
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Secondly, each point in the Subject Space should be interpreted
as a vector drawn from the origin. The length of this vector is
roughly interpretable as the proportion of the variance in that
subject's data accounted for by the INDSCAL solution. All subjects
whose weights are in the same ratio will have vectors oriented
in the same direction. Consequently, the appropriate measure for
comparing subjects' weights is the angle of separation between

their vectors.



2.2.2 The Algorithm

1.

The program begins by converting each subject's dissimilarities
into estimates of euclidean distances by estimating the additive

constant (see Torgerson 1958; Kruskal 1972).

These distance estimates are then double-centred to form a

scalar-product matrix.

These scalar-products may be considered as the product of three
numbers. The first of these will come to be considered as the
subject weight. The other two give at this stage two distinct

estimates of the value of the stimulus co—ordinates.

An initial configuration is input by the user or generated by

the program (see 2.3.3).

The scalar-products between the points in this configuration are
calculated and serve as an initial estimate of the solution

parameters.

For each scalar-product at each iteration a pair of these three
numbers is held constant in turn and the value of the other is

estimated.

When maximum conformity to the data is reached by this iterative
process, the two estimates of the stimulus coordinates are set

equal and one more iteration is performed.

The matrices are normalised and output as solution.
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2.3 FURTHER OPTIONS

2.3.1 Data

Consider again the example given above (section 2.1.1). 1In it we
had three subjects judging six stimuli. Thus each subject generates a
lower triangle matrix of five rows if the diagonals are omitted. These
are input to the program after the READ MATRIX card sequentially, i.e.
the matrix of subject I is followed by that of subject II which is
followed by that of subject III, without break, fifteen lines in all.

The program will also analyse other types of data including
correlation or covariance matrices. In this case the 'stimuli' will
be the variables which are correlated and the 'subjects' perhaps

replicative studies.

At the beginning of an INDSCAL analysis each input matrix of
similarities, dissimilarities, or distances is converted into a matrix
of scalar products. To equalize each subject's influence on the analysis
these data are normalized by scaling each scalar products matrix so that
its sum of squares equals one. Data input as covariances or correlations
are not converted to scalar products and are not normalized in this way,
thus it is essential to signal this type of input by means of the

DATA TYPE parameter (see Section 3).

2.3.2 Number of dimensions

Some experimentation 1s generally needed to determine how many
dimensions are appropriate for a given set of data. This involves
analyzing the data in spaces of different dimensionality. For each space
of r dimensions the program uses as a starting configuration the solution
in (r + 1) dimensions less the dimension accounting for the least variance.
Usually between two and four dimensional solutions will be adequate for

any reasonable data set.



2.3.3 Starting configuration

The analysis begins with an initial configuration of stimulus
points. This may be supplied by the user and read under a READ CONFIG
card. This configuration should contain stimuli coordinates in the

maximum dimensionality required.

Alternatively the program can generate a configuration either by
a method similar to that used in IDIOSCAL or by picking pseudo-random
numbers from a rectangular distribution. If the value of the
parameter RANDOM is O then the IDIOSCAL procedure is used, otherwise the
value is used és a seed to generate the random numbers. Since sub-

optimal solutions are not uncommon with this method users are strongly

recommended to make several runs with different starting configurations.
A series of similar (or identical) solutions may be taken to indicate

that a true 'global' solution has been found.

Alternatively, the user may wish to overcome this particular
difficulty by submitting, as an initial configuration one obtained from,
say, a MINISSA run in which the averaged judgements have been analysed.
This method will also reduce the amount of machine time taken to reach

a saolution.

2.3.4 External analysis

On occasion a user may wish to determine only subject weights for
some previously determined stimulus configuration, such as a previous
INDSCAL solution, or, some known configuration (as in our example the
actual geographical location of the city areas). This option reguires
that an input configuration be supplied under the READ CONFIG card.

The full set of data should be read in under the READ MATRIX card but
FIX POINTS should be set to 1 on the PARAMETERS card and the program
will then solve only for the subject weights. A

)
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2.3.4.1 Large data sets

This option is particularly useful when the user has more data
than the program is capable of handling (see 3.2). The user can use
the configuration obtained either from a MINISSA analysis of averaged
judgments or from an INDSCAL analysis of some judiciously selected

subset of subjects and fit to it any number of subjects' weights.

2.3.5 The SOLUTIONS parameters

The axes of the solution correspond to the major direction of
variation in the subjects' data. They will not usually correspond to
the principal axes of the configuration, in which, the coordinates on
the axes are uncorrelated. In the INDSCAL solutions, by contrast,
the coordinates will usually be correlated and these correlations are
output as the scalar-products matrix for the stimulus configuration.

A similar scalar-products matrix is output for the subject space. 1In
this however, it is a dispersion matrix whose diagonal entries are
variances, representing the degree to which subject variation is
concentrated in that dimension, and whose off-diagonal entries represent

the co-variation between dimensions in the subject weights.

If the user wishes to constrain the solution as closely as possible
to orthogonality (i.e. in the sense that the correlation between the
coordinates is zero) then the parameter SOLUTIONS should be set to 1
on the PARAMETERS card. Users are warned that this will necessarily

produce a suboptimal solutiom.

2.3.6 Negative weights in INDSCAL solutions

There is no interpretation of a negative subject weight in an
INDSCAL solution. Nevertheless, from time to time negative values do
occur in the subject matrix. If these are close to zero, then the

occurrence is likely to be due to rounding error and should be regarded



as zero for interpreting the solutions. Large negative values on
the other hand suggest a more substantial error or that the model is

not appropriate to the data.

2.3.7 1Individual correlations as a measure of goodness~of-fit

Being a 'metric' procedure the index of goodness-of-fit of model
to data is the correlation between the scalar products formed from the
subject's data and those implied by the model. The program outputs
a correlation coefficient for each subject and also the average
correlation for all subjects and a root-mean-square coefficient which

indicates the proportion of variance explained.

2.3.8 The stopping criterion

At step 7 of the algorithm the improvement in correlation is
computed. If this is less than the value specified on the CRITERION
parameter on the PARAMETERS card, then the iterations are ended. Users
should make this value larger if they wish to essay a number of

exploratory analyses or to test a number of starting configurations.



3. INPUT PARAMETERS

All parameter keywords may be shortened to the first four

letters.

3.1 LIST OF PARAMETERS

Keyword

SOLUTIONS

FIX POINIS

RANDOM

DATA TYPE

CRITERION

MATFORM
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Default Value

0

0.005

O:
1l:

All subsequent mis-spellings are ignored.

Function

Compute all dimensions simultaneously.
Compute separate one dimensional
solutions.

Iterate and solve for all matrice:

Solve for subject weights only.

Random number seed for gemerating the
initial configuration. (Used when the
user does not provide the initial
configuration by use of READ CONFIG card).

0:
1:

2:

IDIOSCAL starting configuration.

Lowerhalf similarity matrix
(without diagonals).

Lowerhalf dissimilarity matrix
(without diagomnals).

Lowerhalf euclidean distances
(without diagonals).

Lowerhalf correlation matrix
(without diagonals).

Lowerhalf covariance matrix
(without diagonals).

Full symmetric similarity matrix
(diagonals ignored).

Full symmetric dissimilarity matrix
(diagonals ignored).

Sets criterion value for termination of
iterations.

Input configuration punched stimuli
(rows) by dimensions (columns).

Input configuration punched dimensions
(rows) by stimuli (columns).
Only valid with READ COMFIG.
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3.3

NOTES

Program limits

Maximum number of dimensions = 5
Maximum number of stimuli = 30
Maximum number of subjects = 30
N OF SUBJECTS x (N OF STIMULI)?® = 18000
max (N OF SUBJECTS, N OF STIMULI)

X maximum no. of dimensions X 3 = 2500

The program expects input in the form of real (F-type numbers),
and the INPUT FORMAT card should allow for this.

The INPUT FORMAT card should read the longest line of the

input matrices.

PRINT, PLOT AND PUNCH OPTIONS

The general format for printing, plotting and punching output

is described in the Overview. In the case of INDSCAL, the available

options are as follows:

3.3.1 PRINT options (output to line printer)

Option Form Description

INITIAL N X r Three matrices are printed:
p Xr 1. the initial estimates of the subject
p Xr weights.

2. & 3. separate estimates of the
stimulus configuration.

FINAL N X r Two matrices are printed being the

P Xr matrix of subject weights and the
coordinates of the group space.
These are followed by the correlation

N between each subject's data and
solution and the matrix of cross—
r X r products between the dimensions.
HISTORY An iteration by iteration history

of the overall correlation. (The final
(3) matrices at convergence are also
printed).

SUMMARY Summary of results produced at end of

each analyses.
4,13
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By default only the solution matrices and the final overall

correlation are printed.

3.3.2 PLOT options

Option

INITIAL

CORRELATIONS
GROUP
SUBJECTS

By default the Subject and Group

3.3.3 PUNCH options

Option

FINAL

CORRELATIONS

SCALAR PRODUCTS

(output to line printer)

Description

The initial configuration may be
plotted only if one is input by the
user.

The correlations at each iteration
are plotted.

Up to r(r-1)/2 plots of the p stimulus>
points.

Up to r(r-1)/2 plots of the Subject
Space.

Spaces will be plotted.

Description

Outputs the final configuration
and the subject correlatioms in
the following order:

- each subject is followed by the
~coordinates of its weight on
each dimension;

- each stimulus point is followed
by its coordinates on each
dimension.

The overall correlation at each
iteration is output in a fixed format.

The scalar product matrix is punched.

No punched output is generated by default.



EXAMPLES

4,1 TEST RUN

col 1

col 16

RUN NAME
TASK NAME

N OF SUBJECTS
N OF STIMULI
DIMENSIONS
PARAMETERS
COMMENT

INPUT FORMAT
COMMENT

READ MATRIX

36

—67_92
70 31 31

760 41 30 31

—41_50_36_67_40

57

~73 94
7133 43
T60_42_42 33

57 64 _46_73_40

73
90120
—99 43 33
84 57 30 43

“42758 41 90 56

PRINT
PLOT
COMPUTE
FINISH

INDSCAL TEST DATA
...FROM EXAMPLE IN 2.1.1
3
6
2
CORRELATIONS (1) ,RANDOM(34551)

THIS IS THE SET-UP FOR THE EXAMPLE GIVEN.
NOTICE THE USE OF THE SHORTENED PARAMETER
DESIGNATION AS IN 'DATA(2)'

(5F3.0)

IN THE DATA, THE UNDERLINE '_' DESIGNATES
A SPACE.

FINAL, HISTORY
ALL
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APPENDIX 1: RELATION OF INDSCAL-S TO PROGRAMS NOT IN MDS(X)

The INDSCAL model is one of the family of models included in
the IDIOSCAL program. It is believed that the INDSCAL-like part
of IDIOSCAL is, however, prone to suboptimal solution for unknown

reasons.

A non-metric INDSCAL model may be approximated using ALSCAL.



APPENDIX 2:

The INDSCAL model and algorithm

Let subjects be indexed i 1,...,N

and stimuli be indexed i,k = 1,...,p

The INDSCAL model allows each individual i to rescale each
dimension a (a = 1,...,r) of the group space X by applying a

rescaling weight w to each dimension.

Thus we define a private space Y rescaled according to a

subjective metric, i.e.

- i
Z - {yja}
i .
Yia = Y¥ia ¥i (1)
Within this space the conventional Euclidean distance model
holds:
i i i
= - 2 2
djk g (yja yka) )

By substituting (1) in (2) and manipulating, we derive

a more general weighted distance model

. r
1 _ - 2
djk _J g Yia (Xja Xka) (3



The Algprithm

This section is based on Carroll and Chang (1970) which is

used with permission.

Data are first converted into distance estimates following
Torgerson (1958 pp 254-259).

The distance estimates for each subject are converted to a
matrix of scalar-products B . This is done by double-centring

the matrix whose general entry is -1 d;k
2

This will be regarded as a matrix of scalar products such

that

. r .
i i
bjk B 2 yja Yka (42)

or, by substituting (3)
i

T
bjk = 2 Yia xja *ra (4b)

Let us rewrite (4a) as
T

- L R
%iik = ) Yia *ja %ka )

Where

& means a least-squares approximation

L and R simply distinguish the x's

Let W, XL and XR represent the corresponding matrices (N X r),
. (p X r) and (p X r) respectively, and suppose we are given initial

estimates for XL and XR and we want to derive a least-squares estimate

for W

4.20



Letting s = N(j-1) + k, so that s varies from 1 to N2,

we define

= L R
sa T %ja *ka
and
Z* =
is - %ijk

We may now rewrite (5) as

* T
Z, = lw. g (6)
is ~ ia ©.a
a
It is clear that a least-squares solution is available for W.
Alternatively we may put (6) in matrix form
*
zZ =z W@ N

(The columns of Gt may be thought of as the Kromecker products
of the corresponding column vectors of XL and XR).

The least squares solution for W (W) is

RO (8)

1= >
[
N
X ]

Having solved for W we may get a better estimate of XL

say by similar means.

Let u = p(i-1)+k (u varies from 1 to pN) and define
n = L and 2 3
wa = "ia® %ka P %y T zijk

Now (5) may be rewritten as

%

Z.
1u

L
Xja hua (9)

n
o r~1H

or,in matrix form

.21
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22

*%

Z = §L gr (10)

from which the least—squares estimate for XL is

The process is repeated on Xr and re-iterated until the process

converges.
Note that while there is no constraint making XL R the basic

symmetry of the b: ik guarantees that at conversion XL will be

related to XR as

TR
-1

o S 3

where C is an r X r diagonal matrix.
In practice XL is set equal to XR and W is recomputed

(Xr being the last computed).



