Three-Way and Further
7 Extensions of the Basic Model

There are not three incomprehensibies. nor three uncreated: but one uncreated
and one incomprehensible

QuicuNoue VuLt (Creed of St. Athanasius)

Book of Common Praver. 1662

7.1 Introduction

The remaining programs in the MDS(X) series are either designed for the analysis
of three- (and in the case of cANDECOMP, higher-) way data or (as in the case of
PREFMAP | and II) are more complex variants of models already encountered in
Chapter 6.

The main differentiating characteristic of the programs considered here is the
form of the model. or rather models, since both PREFMAP and PINDIS consist of a
hierarchy of models of increasing complexity. As In the previous chapter, we shall
begin by examining the type of data input to these programs—this provides the
best clue to their most fruitful areas of application—and then go on to describe the
form of the models employed.

7.1.1 Three- (and higher-) way data

The term three-way data refers to a ‘cube’ of data (see Figure 7.1, p. 192). Such
data occur frequently. The third way usually consists of a set of individuals,
occasions, methods, points in time, experimental conditions or geographical
locations. Two types of 3-way data are usefully distinguished:

(i) 3-way data which are two-mode, i.c. consist of a set of ordinary 2-way, one-
mode, (dis)similarity matrices, and

(ii} 3-way data which are three-mode, representing for instance the preferences
of a set of subjects (mode 1) for a set of food items (mode 2), where the judgments
were made at a number of different occasions (mode 3).
Examples of such 3-way data are:

(a} Three-way, two-mode data (A set of pairwise (dis)similarity matrices)

A set of individuals {mode 1) each produce a matrix of pairwise similarity ratings
between stimuli (mode 2).

Over a number of weeks {mode 1) the mutual attraction of a set of fraternity
members (mode 2) is assessed by averaging the preference scores they give to each
other.

A set of individuals rate a set of concepts in terms of a set of semantic differential
scales. The ratings between each pair of scales are then correlated. This gives rise to
a set of correlation matrices between scales (mode 1), one matrix for each concept
(mode 2). (Note that in this case what were originally 3-way, 3-mode data have
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been reduced by the researcher to 3-way, 2-mode data by aggregating over
individuals.)

The frequency with which each pair of plant species (mode 1) co-occurs 1s
tabulated for each of a number of locations (mode 2).

A set of attitude items (mode 1) are rated on a 7-point scale by a set of subjects,
and a number of different coefficients of ordinal association (mode 2) are calculated
between the items.

A set of five live fish (mode 1) are confronted with different stylised shapes of fish,
differing on sexual and other characteristics. Their behaviours are summarised in
each case by a matrix of rank correlations representing the similarity of behaviour
when presented with stylised fish i as opposed to stylised fish j (mode 2).

(b) Three-way, three-mode data (Three distinct sets of entities)

A set of individuals {mode 1) rate a set of automobiles (mode 2) on a set of rating
scales (mode 3).

Members of a social group (mode 1) rank each other (mode 2) in terms of
emotional closeness. Data are collected on a number of occasions (mode 3).

The input (mode 1)-output (mode 2) matrices between a set of industries is
collected for a set of nations (mode 3).

(¢} Higher-way data (N-way data)

There are examples in the literature of four-way data, e. g semantic differential
experiments on a number of occasions (mode 1), using the same set of individuals
(mode 2) to judge the same set of concepts (mode 3) on the same set of rating scales
(mode 4). (This is 4$-way, 4-mode scaling.)

Each year (mode 1), a (different) set of individuals make pairwise judgments of
similarity between a set of names of nations. The investigator wished to distinguish
European. North American._dLatin American and Third World subjects’
judgments. and therefore produced a separate correlation matrix between nations
(mode 2) for each sphere of origin (mode 3). This is 4-way, 3-mode data.

In principle. data of any way can be scaled. and the CANDECOMP program accepts
up to seven-way data. Users are advised to proceed beyond three-way data with
considerable caution. They are in largely uncharted territory.

7.1.2 Organisation of the chapter
The defining characteristics of the MDS(X) programs for analysing three-way and
related data are described in Table 7.1. As in previous chapters, characteristics of
the data. scaling transformation and model are used to define the programs
involved. The models described in this chapter consist mainly of generalised
versions of the distance and vector models encountered in Chapter 6. The exact
form of the generalisation is specified in Table 7.0 under the headings of
dimensional weighting and rotation (in the case of distance models) and vector
weighting and translation (in the case of vector models). It will be easier to discuss
these increasingly complex transformations in the context of the program(s) where
they occur.

Let us first take the programs in the order in which they appear in Table 7.1, an
order determined by the type of data they analyse. In the subsequent sections
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of the chapter, by contrast, the order will proceed from the simplest to the more
complex models.

We have already encountered PREFMAP as a program for mapping two-way, two-
mode data into a user-provided configuration according to the vector and simple
distance models (see 6.2.1 and 6.2.4). In this chapter these models are extended to
include a weighted distance model (PREFMAP-I1) and a rotated and weighted distance
model (PREFMAP-1). As before. these are chiefly used to analyse sets of preference or,
in general. similarity rankings or ratings when the user wishes to represent both the
stimuli and subjects in the same solution.

The most common form of three-way data is two-mode. and the most popular
form of analysis is the 1npDscaL model. This model interprets differences between
the subjects (third-way) as arising from differences in the weights (interpreted as
importance or salience) ascribed to the dimensions of a common configuration.
Because of its conceptual simplicity it makes a natural starting point for discussing
more complex models, and is explained in 7.2.1.

An alternative approach to studying individual differences is to scale each matrix
separately as an initial stage and then compare the configurations obtained. The
pINDIS hierarchy of models provides a successively complex set of models for
comparing configurations. There is no reason why the configurations should be
obtained in this way; any set of configurations referring to the same set of objects,
however obtained and of whatever dimensionality. may legitimately be input. The
pINDIS models are discussed last, in section 7.4.1. due to their greater complexity.

This chapter also deals with three-way, three-mode and higher-way data, which
may be analysed using a generalisation of the scalar products or factor models
already encountered in the last chapter (e.g. MDPREF ). The basic ideas of canonical
decomposition, used to impiement these models. are discussed in 7.2.2, following
the exposition of the INpDscaL model which turns out to be a special case.

2

7.2 Individual Differences and Dimensional Salience

Three-way. two-mode data appear very frequently in the form of a set of
(dis)similarity matrices. A typical example occurs when psychologists have subjects
make pair-comparison estimates of the similarity between stimuli (such as colour
chips) and wish to examine how individuals differ among themselves in the way
they percetve colour. (This is the origin of the acronym: INdividual Differences
SCALing.) Sociologists often have correlation matrices between a given set of
variables for a number of different survey subgroups, and wish to see how the
subgroup matrices differ (see 7.2.1.3). Plant ecologists may have co-occurrence
matrices for a number of species, one for each of a number of sites chosen to differ
on given criteria, and wish to inspect the differences between the sites.

Each example poses a similar methodological problem of aggregation. If the
data for each element of the third-way differ to a substantial degree then there is
little communality and it is hard to see how they are to be compared at all. If, by
contrast. subjects differ in no systematic way but simply represent minor random
fluctuations. then there is no point in making anything of the differences.
However. if the data are simply pooled together as a single matrix at the
outset then all information about differences—whether systematic or random—
1s lost.
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Drawing on ideas developed by Horan (1969), Carroll and Chang (1970)
propose the following way of thinking about such individual differences. Suppose
each individual (group. or element in the third-way) makes use of a variety of
attributes or dimensions in judging the stumuli (the exposition 1s easiest in
psychological terms. but the model generalises easily to encompass any other sort
of third-way element). Then define a master or group space. which consists of all the
dimensions which the subjects happen to use. Each individual subject’s space can
now be thought of as a special case of the group space—as a reduction of the group
space, since she is using some subset of the total available dimensions. This 1s
termed the subject’s “private space’.

In Horan's original formulation. every individual was simply thought of as either
using, or not using, each group space dimension. so each "private space’ could be
represented by a sequence of is and 0s, indicating whether the subject used (1) or
did not use (0) the dimensions of the group space. This “all or nothing™ approach
was modified by Carroll and Chang by postuiating that each subject attaches a
parying (positive) weight to each dimension which represents the degree of salience
(or importance, or attention or relevance or centrality) of that dimension to her
judgments. So each individual i can be thought of as having an idiosyncratic set of
weights, symbolised by w': the weight given to dimension a of the group space by
individual i. These weights hence represent the way-in which the subijects differ in
the importance attached to each of the dimensions. An individual who attaches
equal importance to each of the dimensions will have a set of weights of the same
value, and it is such a subject whom the group space actually represents. Others by
contrast will attach different weights to different dimensions of the group space and
thus systematically distort the group space into the ‘subjective metric’ of their own
private space.

The INDscAL .model presents a way of interrelating these ‘private spaces’ and
provides one-way of comparing how subjects (or elements of the third-way) differ
among themselves. but only. be it noted. by accounting for the individual
differences in terms of differing weights being associated with the same dimensions:
INDSCAL is explicitly a dimensional model.

7.2 1 The npscaL maodel *
The Carroli-Chang model is described in full in their definitive 1970 article. A lucid
and extended exposition. relating INDscAL to other forms of three-way scaling is
given in Carroll and Wish (1973) and a wide range of applications is discussed in
Wish and Carroll (1974). Elementary treatments are given in chapter 4 of Kruskal
and Wish (1978), in Spence (1978) and in the MDS(X) documentation. In this
section we shall concentrate chiefly on the basic characteristics of the model and
upon the interpretation of an INDSCAL-s solution. Further details of the estimation
procedure in INDSCAL-S are contained in Appendix A7.2.

Before using INDscaL-s or embarking upon interpretation of an INDSCAL
solution, it is essential to understand clearly the characteristics of the group space,
the subject space, the private spaces and their interrelationships.

*Hereafter, INDSCAL refers to the model and INDscAL-S to the version of the program in MDS(X).
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(iy The group space (denoted X) consists of a configuration of p stimulus points
in a user-chosen number of dimensions r. The orientation of the axes of this space
are uniquely determined in the sense that any change in their orientation destroys
the optimality of the INDSCAL solution. The INDSCAL axes are often found to be
readily interpretable.

This group space acts as the ‘reference configuration® to which all the subjects’
private spaces may be referred and from which they may be all derived. The group
space need not in fact describe any actual subject. and the configuration should not
itself be interpreted if it turns out that it is simply a compromise between the
configurations of groups of subjects with very different patterns of individual
weights.

ity The private space of each subject i (denoted Y'") is a configuration of the p
points in r dimensions. Within cach private space. distances between stimuli are
straightforwardly Euclidean.*

(ii) The subject space (denoted W) is simply a useful graphical way of
comparing subjects in terms of their sets of dimensional weights. It has the same
dimensions as the group space and each subject is represented by a vector located
by the value of the weights on each of the dimensions.

These basic ideas are illustrated in Figure 7.1 by reference to a simple artificial 2-
dimensional example (see also Carroll 1972, p. 105 et seq.. Carroll and Wish 1973,
b. 57 et seq., and Kruskal and Wish 1978. p. 61 et seq. for similar examples). In this
expository example, there are 3 objects and 16 subjects. so the data would consist
of 16 lower triangular matrices between the 3 objects. The overall 2-dimensional
group space configuration. X. consists of 3 points which make an equilateral
triangle (representing equal distance between the objects). The private spaces. Y".
for subjects 1 and 2 are also presented. Note that in the private spaces the
configuration of points no ionggr forms an equilateral triangle but rather an
isosceles triangle (two sides remain the same length but the third is foreshortened).
Clearly, the distances between stimulus points are different within each private space.
The two private spaces are nonetheless related: they may be derived from the
reference group space by a simpie process of differentially stretching or shrinking
the axes of the group space by the square root of the subject’s ‘importance weights’.
In other words. the co-ordinates in the private space (say, for subject 1) are simpiy
a weighted version of the group space co-ordinates. To obtain subject i's private
space. we take the co-ordinates of the p stimulus points on the 1st dimension of the
group space (x;;) and rescale (stretch or shrink)} them by the square root of subject

i's weight for this dimension (| w!’): that is,

1.[ii = 7 “.Ll)x

Sja AW Jja

Then the distance between the stimuli j and k in subject i's private space will be:

()
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u

*In INDSCAL the private space of each subject is estimated as a distortion of the group space directly from
the data. In PiNDIS. by contrast. each subject’s 2-way data arc first scaled and then input in the form of
configuration co-ordinates into the program.
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or. in simplified form (taking the weight outside the squared term):
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This last equation gives the general form of the INDSCAL and other weighted
distance models: A “subject’ i’s judgment of the (dis)similarity between objects j and
k is taken to be a (linear) function of the overall distance between stimuii j and k in
the group space. after that space has been differentially rescaled (stretched and
shrunk) by the subject’s set of weights into the ‘subjective metric’ of the subject
concerned.

7.2.1.1 The group stimulus space: its properties and interpretation

The group stimulus space functions as the basic reference configuration from which
the private configurations of individual subjects can be derived by differentially
shrinking or stretching the dimensions by the {square root) of the corresponding
weights.

The inpscaL dimensions actually represent the (orthogonal) directions where the
variation among subjects is the greatest: it is for this reason that they are normally
easy to interpret. These dimensions are uniquely identified. in the sense that if the
original dimensions are rotated and new subject dimension weights calculated. the
resuiting solution will explain the subjects’ data less well than the original
solution.t If it turns out that the extent of individual differences is not great, then
such a reduction in explained variance is likely to be small, but in the normal way
the reduction is usually fairly substantial. Unless there are compelling reasons of
interpretability or little subject variation. the INDscaAL axes should be regarded as
fixed. S

In most MDS solutions encountered so far. the final configuration is rotated to
principal axes—that is. dimensions are chosen which have the statistically
convenient property that co-ordinates of the points are not correlated across
dimensions. This is not ( generally ) true of anINDSCAL group space: the dimensions of
greatest subject variation will usually give rise to a configuration where the co-
ordinates of the stimulus points are to a greater or lesser extent correlated. { The
information about the extent of this correlation between pairs of axes is contained in
the output from INDSCAL-s in the matrix of scalar products between dimensions
('sums of products’) for matrix 2.

The INDscAL group stimulus space configuration should therefore be interpreted
with caution: strictly speaking it represents a subject who weights the dimensions
equally. and if a significant number of subjects’ weights depart markedly from
equality then there is a danger of trying to interpret a configuration which is in no
sense representative. That said. methods for external interpretation of INDSCAL
dimensions—and especially linear property-fitting {see 4.4.1}—are particularly
appropriate. since the dimensions are nor arbitrary and it is important to try to tie
down their meaning as accurately as possible. Good examples of the use of

+The unique orientation of axes in the iNDscaL model means that the solution is unique up to
permutation of axes. which is equivalent to saying that the only permissible rotation of the dimensions
which preserves all signiticant information is through multiples of 90°. However. the actual size of the
contiguration is arbitrary. and is therefore normalised so that the variance of the projections on each of
the co-ordinate axes is unity and the centroid of the contiguration provides the origin (Carroli and Wish
1973, p. 30M

+An option soLUTIONs {1) exists in the MDS(X) version to obtain a solution where the axes are as close
as possible to being uncorrelated. Such a solution will normaily be sup-optimal compared to the
ordinary solution.
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property fitting to validate or confirm the interpretation of INDsCAL dimensions
occur in the classic Carroll and Chang (1970) paper and eisewhere.

INDSCAL-S can also be used in an external mode if the user provides the program
with a group stimulus space configuration (which remains fixed in orientation) and
the INDscAL analysis then concentrates entirely upon estimating from the subjects
data the subject weights for this configuration. (External use is achieved in
INDSCAL-S using the Fix POINTs (1) option). External analysis of this sort has two
main uses: (1) to scale a large number of subjects’ data and (ii) to compare a number
of different data sets by referring them to a common reference configuration. Thus if
the user has. say. 500 matrices for analysis. it is sensible to choose a manageable
sample of those matrices and scale them. The resulting group stimulus space can
then be fixed. and the subject weights can then be estimated for as many batches of
subject matrices as desired.* An example of the second use occurs where a
replication has been made of a previous study and the researcher wishes to
investigate the extent to which her subjects’ data compare to the weights obtained in
the earlier study. The original group space configuration is fixed under this option.
and the subjects’ weights may then be estimated and compared to those of the
original study.

7.2.1.2  The subject space: its properties and integpretation

When subjects’ data are input to INDsCAL-S they are normalised to have equal
weight. which has the effect of giving each subject’s data equal influence on the
solution. This fact. in conjunction with the normalisation of the group stimulus
space described above, gives rise to several nice properties of the subject space
which are useful to bear in mind when interpreting an INDscAL solution:

(i) The subject’s weight on a dimension is (approximately) equal to the
correlation of the intervals between stimulus co-ordinates on that dimension and the
corresponding pairwise dissimilarity values in the subject’s data

(i} Consequently, the squared subject’s weight on a dimension is
(approximately) equal to the proportion of variance in the subject’s data that can
be accounted for by that dimension (Wish and Carroll 1974. p. 452).

(iii} Therefore. the squared distance from the origin of the subject space to a
subject’s point in that space is (approximately ) equal to the proportion of variance
in the subject’s data accounted for by the full INDscAL solution.

If the dimensions of the INDSCAL solution are uncorrelated. then the word “exactly’
replaces the word "approximately” in the above three sections. Thus in the subject
space portrayed in Figure 7.1. subjects 4. 5 and 6 provide an exampie of subjects
who weight the dimensions equally: they differ only in the fraction of their data
explained by the model, with the data of subject 6 perfectly accounted for.
Similarly. subjects 7 and 2 have the same pattern, giving virtually exclusive salience
to dimension I, whilst subject 3 uses only dimension 11. Looking at the pattern in
terms of goodness of fit, the data of subjects I, 6 and 2 are totally accounted for.
whilst those of subject 4 are very poorly explained.

*See Coxon and Jones 1979, pp. 54-9. and especially T3.17. for an example using a balanced set of 68
matrices to obtain the group space configuration by reference to which 286 subjects’ subject weights
were estimated.

-
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Note that only positive weights are allowed by the INDscAL model. If, as
occasionally happens, a very small negative weight occurs in may be considered as
approximation to a zero weight; if it is substantial it can only be interpreted as
indicating that the basic model does not hold for the data of the subject concerned.

The significant information in the subject space is contained. then, (1) in the
direction in which a point is located from the origin, since any points lying on line
from the origin have weights in the same ratio, and (2) in the distance (of a subject
vector} from the origin, representing how well the subject’s data are explained by
the model.

Before embarking on any systematic analysis of INDSCAL subject weights. it 1s
important to know something of the stability of INDSCAL solutions (see Jones and
Waddingron 1973: MacCallum 1977).

(i} Simulation studies show that. even in circumstances of high error in the
data. recovery of the group space configuration and its dimensional orientation is
excellent. but that

(i1) the stability of the subject space is far less stable and much more subject to
fluctuation in the presence of error.

The temptation to use cluster analysis on subject weights should be strongly
resisted: the separations of subject points are in no sense ordinary distances and
their location is far {rom stable. The question of whether any linear procedures
such as aNova and its multivariate variants should be used on INDsCAL weights
remains contentious. MacCallum (1977) and others often strongly counsel against
their use: Carroll and others think that a more lenient approach is called for.

Usually the user will want to compare subjects in terms of the patterns of relative
salience given to dimensions. This is best done by concentrating on the angular
separation between subject vectors: the smaller the angle of separation, the more
simtlar is the pattern of weights. In the two-dimensional case. it is usually a simple
matter to see closely collinear ‘sheaves’ of subject vectors in the subject space, and
such bunching can also be detected visually in three dimensions. Beyond that,
statistical analyses of different subject vectors should be used (see Mardia 1972;
Coxon and Jones 1979, pp. 128-36 for use in an MDS context). A simple
alternative for two-dimensional data is simply to take the ratio of the weights for
each subject and. since the distribution of such ratios is usually markedly positively
skew, it often makes sense to correct this by taking a logarithmic transformation of
the weight ratios.

An alternative to Carroll and Chang's representation of subject weights has been
suggested recently by Young (1978). The Young Plot ailows the amount of
variation explained to be represented independently of the relative salience of the
subject weights, and is illustrated in Figure 7.3b (p. 199).

The Young Plot

The Young Plot charts each subject in terms of two things—the relative salience
ascribed to one dimension over another {on the horizontal axis) and how well the
subject’s data are fit by the model (the vertical axis). The first is measured by the
ratio of the two-dimensional weights—which can be interpreted trigonometrically
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as the tangent of the angular separation between a subject’s vector and the line of
equal weighting in the conventional representation of INDSCAL subject space.* The
goodness of fit is given simply by the squared correlation r? between the subject’s
original data and the values predicted by the iINpDscaL model. This information is
provided separately in an INDSCAL run.

The Young Plot and its construction from a set of subject weights is illustrated in
Figure 7.3b and is very simple to read. Subjects located in the centre of the
horizontal axis (such as the Labour group of voters in this example) weight the
dimensions equally: the more that dimension 1 dominates over II the further left the
subject point is, so the non-voters group has the most dominant weight for
dimension I and the Conservative voters group has the most dominant weight for
dimension II. The goodness of fit is simply read up the vertical axis. In this example
the greatest differentiation is between the ‘other parties’ group whose data are not
well explained (being largely Scottish and Welsh Nationalist party supporters they
are presumably dancing to a different piper) and the others.

The most important advantages of the Young Plot are that it gives accurate
representation of patterns of dimensional weighting and of goodness of fit
independently of dimensional correlation, and concentrates the user’s attention
onto the angular separation (relative salience) of patterns of subject weights rather
than on the proximity of points portraved somewhat misieadingly in a
conventional subject space. The Young Plot can also be modified in various
ways—to portray patterns of three-dimensional weights. or to compare relative
salience of weights with any other variable of interest (see Coxon and Jones 1980.
p. 59 et seq.).

7.2.1.3  An example: political party imagery

Alt et al. (1976) carried out a survey of 2.462 British voters after the 1974 British
election. The questionnaire included 20 attitudinal items— political party features
(items 1-7), the parties’ handling of contentious issues (items 8—10), blame (11—
12), taxes and pensions (13-14) and policy positions (15-17). These are
reproduced in Table 7.2. Each pair of items was cross-tabulated and the
association between them measured by Goodman and Kruskal’s gamma, which
preserves weak monotonicity of the item categories (see 2.2.2 above). The
respondents were divided into five subgroups. viz

Conservative voters

Labour voters

Liberal voters

Other voters (principally Scottish and Welsh National Parties)
Non-voters

mgo w3

Each of these subgroups were then treated as a ‘pseudo-subject’, and gamma
coefficients were calculated for each subgroup, hence providing a (5 x 20 x 20)
array for input to INDscaL. The group space configuration is given in Figure 7.2 and

*The tangent of the angle which the subject vector makes with the first dimension {tan 6,  is defined as
the ratio of the weight on dimension II to the weight on dimension I. Tan (§, — 45°) measures this
predominance of dimension II over dimension I as a deflection {angular departure) from the line of
equal weighting.
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Item No. Symbol Title

1 K Keeps/breaks promises
2 D Divides/unites country
3 B Bloody-minded,/reasonable
4 G Good for one/all ciasses
5 E Extreme/moderate
6 Ca Capable/not capable
7 SF Stands firm/gives way
8 P Prices

9 M Miners’ strike

10 S Strikes

11 PB Blame for prices

12 MB Blame for miners’ strike

13 T Taxation

i Pe Pensions

13 CM Common Market

16 N Nationalisation

17 SS Social services

18 W Wage controls

19 C Communists

20 R Reliability

Table 7.2 /tems in political party imagery study (Alt et al. 1976) (Reproduced
by permission of the journai Quality and Quantity)

2

the subject weight plots are given in Figure 7.3. Alt et al. identify dimension I as
‘image consciousness’ (by which they mean an ideologically-based concern with
both political style and performance) and dimension II as "policy consciousness’
(concerned primarily with welfare and related policy issues). Note from the shape
of the group stimulus space configuration that the two dimensions are clearly
positively correlated. The authors do not provide this information, but our
estimate is r ; = 0.23.

Further interpretation of the group space should wait upon inspection of the
subject weights (Figure 7.3). Even a cursory examination of the subject space (a)
and more obviously of the Young diagram (b), shows very considerable differences
in the goodness of fit and in the relative salience of two-dimensional weights
between the subgroups.

But just how significant are these relative differences in weights, given what we
know of the relative instability of INDscaL weights? Alt et al. use an unusual form of
internal validation. They divide their subjects into a number of pseudo-groups
based upon ‘irrelevant’ factors (such as male/female) and random criteria
(exclusive but randomly constructed subgroups and overlapping random
subsamples of subjects) and proceed to estimate weights for each group, keeping
the reference configuration fixed. Only if the voter subgroup differences exceed the
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Figure 7.2 INDSCAL group space: political imagery study

random differences do they consider them to be sufficient to merit separate
treatment. It turns out that the differences among voter subgroups greatly exceed
those found for the random groups, especiallv on the first dimension. The authors
then construct the private space for each subgroup (pp. 308-9). and comment:

The relative unidimensionality of the items for Liberals and Non-voters is
apparent. For them, big differences between items only occur between those
most clearly reflecting ‘style’ and “performance’. In contrast, voters for the two
major parties use both dimensions in differentiating items, and the previously
mentioned differences between these groups are also evident. Particularly
striking is how small the group space looks—how undifferentiated all the items
appear—to ‘voters for other parties’. These results are substantively not
necessarily surprising: the items were. after all, re-scaled as inter-party
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Figure 7.3 Subyject weights plots: political imagery study

comparisons. The clarity and parsimony with which iNDscaL recovers this
property of the group space is. nevertheless. impressive.

(Alt et al. 1976. p. 310)

This example of the use of iNDscaL shows well how, with a little initiative and
imagination a model developed within an individually-based psychological
tradition can be adapted with considerable success to analyse survey data referring
to several thousand respondents (sce also Coxon and Jones 1977).



APPENDIX 7.2 NOTES ON THE ESTIMATION
PROCEDURE IN INDSCAL

Full details of the alternating least squares procedure for estimating the parameters
of the INDScAL model are contained in Carroll and Chang {1970), Carroil and Wish
(1973) and 1n the MDS(X) documentation of INDSCAL-S.

What follows here is a brief inptroduction to the basic method of analysis.

(i) The basic model assumes that the subject’s data dissimilarities are a linear
function of the distances of the solution

0 = Ly

where the distances refer to the ith individual’s (private) space, i.e.

The first step. as in other metric models. is to convert the subject’s data ( ‘relative
distances') into estimates of distances by calculating an additive constant. as in
classic scaling {see 5.2.3.2), which will make the data satisfv the triangle inequality.

(1) The data ‘distances’ are then converted into estimated scalar products, as in
classic metric scaling (see Appendix A5.2), with their origin at the centroid of the
points. At this stage, each subject’s data are normalised to have equal influence.
The relationship between the estimated scalar products (b,,) and the private space
co-ordinates is simply:

b = 2 Vil (1)

a
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(iii) The INDscaL model, stated 1n its distance form is:

r 5
Uiy __ NI .
bj.l. - Z W, (xju - '\Ru)
44

and the relationship between the group space co-ordinates (x;,) and the private
space co-ordinates (y;,) is:

"= Vi, 2

Substituting (2) into (1) gives

b_(;i} = Z wfrn'\-ja‘\-ku (3)
This is the three-way scalar products formulation of the INDSCAL model. For
notational simplicity. it helps to rewrite (3), putting subject references (i) as
subscripts:

bfﬂ\ - Z “.ia'\-ju'\-ku (Sa)
&

(iv) The estimation of the subject weights () and group space co-ordinates
(x ;) In INDSCAL is performed by a variant of the three-way canonical decomposition
model (see 7.2.2). which ensures that the second and third ways (x;, and x,,) are in
fact identical.

(v) TheinDpscaL model has been shown by Schonemann (1972} to have an exact
algebraic solution—for perfect data. In the case of errorful data. an iterative
process {(which may use Schonemann’s method to provide an initial configuration)
is emploved, using an alternating procedure. It consists of finding a preliminary
estimate for the two stimulus weights (x, and x,,). fixing them, and then estimating
{by least squares) the subject weights w;,. Then the x, are estimated. with the w,,
and x,, fixed, and so on.

When a satisfactory approximation to the data is obtained. the  process
terminates. ways 2 and 3 are set equal. a final estimate of way 1 (subject weights) is
made and the weights are then appropriately normalised before being output.

A caution

All variants of alternating least squares estimation procedures are susceptible to a
greater or lesser extent to local minimum solutions. In any event, users should be
prepared for this eventuality: often ten runs with different starting configurations
are necessary before one can be virtually certain that one has an optimal solution.
In any event, it would be foolhardy to rely on less than three. In the repeated runs,
the group space configurations will probably be very similar excepr for slight
differences in orientation. Since subject weights refer directly to a particular
orientation and will often change considerably under relatively small rotations of
the dimensions, particular attention should therefore be paid to how the group
space dimensions change and to the individual and overall goodness of fit
measures. '



