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1.0 OVERVIEW 
 

1.1 Permap 

The fundamental purpose of Permap is to uncover hidden structure that might be residing 

in a complex data set.  Compared to other data mining and data analysis techniques MDS is 

growing increasingly popular because its mathematical basis is easier to understand and its 

results are easier to interpret (Fitzgerald & Hubert, 1987). 

 

Permap is an interactive computer program.  It offers both metric (ratio and interval) and 

nonmetric (ordinal, ratio + bounds, interval + bounds) MDS techniques.  It solves problems in up 

to eight dimensional space and allows boundary conditions to be imposed on the solution.  In the 

technical jargon, Permap treats "weighted, incomplete, one-mode, two-way" or "weighted, 

incomplete, two-mode, two-way" data sets.  Other jargon would say it handles weighted, 

symmetric, incomplete, triangular or rectangular data sets.  The word “weighted” means each 

data point can have its own multiplier that reflects in some way the importance or reliability of 

the point.  The word “symmetric” means that Permap assumes that the (i, j) proximity value 

equals the (j, i) proximity value, and “incomplete” means that it can handle missing data.  The 

one-mode, two-way and square references indicate that Permap can analyze a matrix of 

proximity information between several objects, and the two-mode, two-way and rectangular 

references means it can analyze objects each of which are specified by an array of attributes. 

 

Permap can treat up to 1000 objects at a time (but see cautions in Section 11) and each 

object can have up to 100 attributes.  It is easy to use, Windows PC-based, visually oriented, and 

allows real-time interaction with the analysis.  It has been designed to have an intuitive interface 

and it avoids many of the arcane alternatives that are seen in the research literature but are never 

used in practice.   

 

1.2 MDS Maps 

Perceptual maps are sometimes called product maps, sociograms, sociometric maps, 

psychometric maps, stimulus-response diagrams, relationship maps, concept maps, etc.  A 

perceptual map is a piece of paper, or any plane, with symbols on it that convey information 

about perceived relationships between the objects represented by the symbols.  

 

What is the difference between a perceptual map and any ordinary map?  Not much, 

although some people make a big deal about it.  Usually, a perceptual map is taken to be a map 

that involves object-to-object relationships that are not amenable to simple, physical 

measurement.  

 

What is an object?  Objects can be anything.  They can be stimuli, constructs, artifacts, 

characteristics, traits, people, companies, bones, arrowheads, words, discussion topics, and so 

forth.  Anything that you want to study can be an object.  If you are interested in how certain 

objects relate to each other, and if you would like to present these relationships in the form of a 

map, then MDS is the technique you need.  
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The MDS algorithm uses object-to-object proximity information to construct the map.  

What is a proximity?  A proximity is some measure of likeness or nearness, or difference or 

distance, between objects.  It can be either a similarity (called a resemblance in some disciplines) 

or a dissimilarity.  If the proximity value gets larger when objects become more alike or closer in 

some sense, then the proximity is a similarity.  If the opposite is the case, the proximity is a 

dissimilarity.   

 

Proximity values can be calculated, measured, or just assigned based on someone's best 

judgment.  If calculated, they typically are based on some mathematical measure of association 

(correlation, distance, interaction, relatedness, dependence, confusability, joint or conditional 

probability, pilesort counts, and so forth) operating on a set of attributes.  

 

What is an attribute?  An attribute is some aspect of an object.  It may be called a factor, 

characteristic, trait, property, component, quantity, variable, dimension (not a good choice in 

MDS work, but occasionally seen), parameter, and so forth.  The attributes should be presented 

in a form where each is normalized  (standardized) to some kind of range or standard deviation, 

but Permap can do the normalizing internally if so desired.  An attribute in one study may be an 

object in another study.  It is all a matter of perspective and interest. 

 

In this manual we present all formulas in terms of dissimilarities and refer to 

dissimilarities rather than proximities or similarities, but the choice is arbitrary.  Typeset 

documents usually represent dissimilarities by the Greek del, ij, where the indices i and j 

indicate that it is the proximity between object i and object j.  However, the Greek symbols do 

not translate correctly in some MS Word versions configured for languages other than English, 

so here we use Dij to represent a dissimilarity. 

 

Ideally, the dissimilarity of each pair of objects is known.  However, because MDS is a 

very robust procedure a few randomly missing values are of little consequence.  In fact, except 

when using very small data sets, MDS is exceedingly good at yielding reproducible results even 

after many data points have been eliminated. 

 

Dissimilarities do not have to be symmetrical.  That is, in general there is no reason that 

the dissimilarity Dij must always equal Dji (note the reversal in subscripts).  In fact, it is fairly 

easy to think of cases where this might be the case, such as where Dij represents the driving 

distance between two stores (objects) and your town has one-way streets.  In this case, your 

distance (dissimilarity) matrix will be asymmetrical.  Fortunately, asymmetrical dissimilarity 

matrices are not too common in applied MDS work.  In those cases where you do have 

asymmetrical dissimilarities, it is up to you to justify using the average of the two halves of the 

square matrix, ignoring one of the halves, or doing separate MDS analyses on each half and then 

somehow combining the results.  All of these options are "right" for certain circumstances (see 

Young & Hamer, 1987, or almost any MDS text).  Permap does not assist with resolving 

questions involving asymmetrical dissimilarity matrices.   

 

Permap requires that dissimilarity values be nonnegative.  (As a quick aside, Pearson 

correlation coefficients can be used, but they have to be shifted to the 0 to 1 range to keep all 
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dissimilarities nonnegative.  There are two ways of doing this.  See Section 6.2 for details.)  

Also, the diagonal of a dissimilarity matrix must hold zeros.  If similarities are used, the diagonal 

of the similarity matrix must hold identical values which are not exceeded elsewhere in the 

matrix.   

 

If you are new to MDS, you might benefit from the books by Cox and Cox (2000), 

Davison (1992), and Borg and Groenen (2005).  The Cox and Cox text is the most 

mathematically orientated, Davison's is the most applied, and Borg and Groenen's falls 

somewhere in between the other two.  To varying degrees, all three texts cover theory, 

application, and historical development.  Young and Hammer (1987) is the best in terms of 

explaining the historical roots of MDS. 

 

 

2.0 GETTING STARTED 
 

2.1 System Requirements 

Permap will run on any contemporary personal computer using a Windows operating 

system.  It is not particularly demanding in terms of computer speed, but if the problem is large, 

say more than 100 objects, then at least a 1-GHz computer is recommended.  Problem solution 

time is often controlled as much by the computer's available RAM (random access memory) as it 

is by the computer's processor speed.  With the XP or 2000 Windows operating systems you 

should have at least 512 MB and preferably 1 GB of RAM.  Vista needs 1 GB or more of RAM. 

 

2.2 Installation 

Obtain a copy of the file Permap.zip.  This file is available on the Internet at 

www.ucs.ull.edu/~rbh8900/permap.html.  After downloading the Permap.zip file, open it using 

any of numerous decompression utilities.  Usually you will have a zip/unzip program included as 

part of Microsoft suite of programs.  If not, one such utility is ZipGenius available at 

http://www.zipgenius.it/index_eng.htm.  ZipGenius is a free program that is particularly user 

friendly, downloads fast, installs easily, and can be run with no training.   

 

After unzipping Permap, you will have Permap.exe, some Windows library files (ocx and 

dll extensions), some example files, a default-values file, and a WAV file.  You might want to 

put a shortcut to Permap.exe on your desktop.  Right click on Permap.exe (in whatever directory 

you chose to put the unzipped files) and drag it to the desktop.  Choose "Create Shortcut Here" 

when you release the right mouse button.  Permap is now ready to use.  Permap can be 

uninstalled simply by erasing the directory you used to hold the Permap files because no 

Registry entries have been. 

 

Start the program by double clicking the Permap shortcut, by double clicking on 

Permap.exe in the directory where you put Permap, or by entering its location and name in the 

Run input box's "command line" which is accessed via the Start button. 

 

Permap can be controlled by a mouse or keyboard.  The alt-key gets you to and from the 

menu bar, the tab-key shifts between controls, and the enter-key activates a control.   
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2.3 Data Input 

Data are entered from a text file (i.e., a file stored in ASCII or ANSI format).  Any 

modern word processor can save information in these generic formats.  For instance, if you use 

WordPerfect, use File/Save As and choose ASCII DOS Text or ANSI Windows Text from the 

File Type box at the bottom of the screen.  If you use MS Word, use File/Save As and choose 

Text Only or MS-DOS Text from the Save As Type box at the bottom of the screen.  

Alternatively, it is often faster and easier to use Notepad, the simple text editor that comes with 

all Windows operating systems.  Notepad is designed for quick entry of short segments of 

unformatted text. 

 

Permap's data files are based on freeform data entry.  This means that keyword identifiers 

announce the presence of various data elements and that these data types can be present in the 

file in any order.  Comment lines can be placed freely throughout the data file as long as they are 

not placed between a keyword and its following data.  All optional information is covered by 

default values.  This means that if you choose not to use weights then they need not be 

mentioned in the data file. 

 

Here is a very simple data set that assumes your data are in the form of dissimilarities.  

All the sentences to the right are for explanation purposes and are not part of the actual data file.   

 

 ________________________________________________________________________ 

 

NOBJECTS=6  Gives the number of objects in the analysis.   

    

DISSIMILARITYLIST   Announces that dissimilarity values follow. 

0           All values must be nonnegative and diagonal values 

.21, 0         must be zero.  The data can be separated with space(s),  

.59, .68, 0       a comma, or both.  DISSIMILARITYLIST is all one  

.74, .79, .2, 0      word and capitalization is optional. 

.88, .8, .24, .25, 0       Missing entries are shown by "NA" or "na." 

.11, .1, .66, .7, .89, 0  It is acceptable to name the objects.  See Appendix II. 

 

 ________________________________________________________________________ 

   

Dissimilarity data can be in either a lower-left half-matrix, as shown above, or in a whole 

matrix format.  If a whole square matrix is entered, the upper-right triangle is ignored.  Entering 

a square matrix is allowed simply to facilitate data interchange with other programs such as 

Excel.   

 

You may wonder why it is necessary to enter the zeros of the diagonal when dissimilarity 

data are involved.  After all, if the data are dissimilarities then these diagonal values must be zero 

by definition.  The answer is that it is not really necessary.  Permap will enter the missing 

diagonal values for you if you don't enter them.  However, experience shows that beginning 

MDS users often get similarities and dissimilarities mixed up unless they are encouraged to enter 
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the zeros whereupon they usually get it correct right from the start.  Unfortunately, a previously 

used convention of requiring that the diagonal values be in the data file was not much admired 

by Permap users.  In fact, it has been the source of so much grumbling that, starting with version 

9.7 Permap was modified to enter the missing dissimilarity zeros if need be.  But remember, this 

does not apply to similarity data.  You will get an error message if the similarity diagonal values 

are missing. 

 

If your proximity information is in the form of similarities instead of dissimilarities, then 

replace the keyword DISSIMILARITYLIST with SIMILARITYLIST and be sure that the 

diagonal values are all equal and are not exceeded by any other similarity value.  There is no 

space before the "LIST" part of the keyword and capitalization is not important except for 

readability considerations. 

 

If you want to use proximity data from a spreadsheet then first save the spreadsheet in 

ASCII format.  For instance, if using Excel, use File/Save As and choose either Text or CSV 

from the Save As Type box at the bottom of the screen.  Then, load the saved file in a text editor 

and enter the keywords (e.g., DISSIMILARITYLIST), titles, and so forth.  Save the edited file in 

ASCII text format with a "txt" or "dat" extension, and use this new file as input to Permap. 

 

Instead of entering proximity data, Permap will accept attribute data.  In this case, each 

object is represented by a set of attribute values and the proximities between objects are 

calculated from the attribute data using any of several standard relationships.  If you want to use 

attributes to generate the proximities then use the following format (only the left-justified entries 

are needed). 

 

NOBJECTS=6  Gives the number of objects in the analysis.   

 

NATTRIBUTES=3   Gives the number of attribute values for each object. 

 

ATTRIBUTELIST    Announces that attribute values follow. 

1, 1, 2               Any range can be used for the data. 

1, 2, 2            The data can be separated with space(s), a comma, 

3, 3, 2    or both.  ATTRIBUTELIST is all one word and  

3, 4, 0    capitalization is optional.  All data entries must be numbers. 

3, NA, 0   Missing entries are shown by "NA" or "na." 

1, 6, NA   It is acceptable to name the objects.  See Appendix II. 

 

You may want to put a title on the map.  You do this with the TITLE or MESSAGE 

command somewhere (anywhere but between a keyword and its associated data) in the data file.  

For example, enter this. 

 

TITLE=     Whatever follows "=", such as this line, is transferred to the top center of the 

output page. 
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A complete list of keywords is shown in Appendix I.  Appendix II shows an annotated 

data input file.  EXAMPLE_A.txt shows a typical MDS problem expressed in terms of 

similarities, and EXAMPLE_B.txt shows one using attributes.  The EXAMPLE_A.txt and 

EXAMPLE_B.txt files, as well as several other example problem files, are included in the 

Permap.zip package and can be loaded by using the File/Load Data From a Text File or by using 

the F2 shortcut key. 

 

2.4 Data Input, MDSX 

To make it easier to use input files originally made for the MDSX family of programs 

(see http:// www.newmdsx.com/), Permap accepts certain alternate commands (keywords) to 

those shown in Appendix I. 

 

The following table gives equivalencies between the MDSX commands and Permap 

commands.  The translation between MDSX and Permap is difficult because MDSX is really a 

suite of programs, some of which treat advanced MDS topics that are not covered by Permap.  

Thus, there are some equivalencies that occur in special cases but are not listed below.  Also, the 

following list ignores MDSX control commands that are not applicable to a real-time interactive 

environment.  For example, input file commands COMPUTE, DIMENSIONS, ERROR LIMIT, 

FINISH, INPUT MEDIUM, NUMBERED, PLOT, PRINT, and PRINT DATA are not needed in 

an interactive environment because they can be issued (with mouse clicks) at any time by the 

program operator.  Further, the MDSX keyword INPUT FORMAT is not needed because 

Permap accepts any numerical format. 

 

 
 

Table 1 

MDSX and Permap Input File Command Equivalencies 

 

MDSX 

 

Permap 

 

Details / Comments 
 
COMMENT 

 
no equivalent 

 
Any line that does not start with a 

Permap keyword is considered to be 

a comment. 

 
RUN NAME 

 
TITLE =  

or 

MESSAGE = 

 
Permap’s title has an upper limit of 

65 characters and the "=" is optional. 

 

 
TASK NAME 

 
SUBTITLE =  

or 

SUBMESSAGE = 

 
Permap's subtitle has an upper limit 

of 98 characters and the "=" is 

optional. 

 
 
# OF STIMULI 

 
NOBJECTS = 

 
MDSX's "#" can be "N" or "NO" 

and Permap's "=" is optional. 

 
# OF VARIABLES 

(used in WOMBATS) 

 
NATTRIBUTES = 

 
MDSX's "#" can be "N" or "NO" 

and Permap's "=" is optional. 
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READ CONFIG 

 
LOCATIONLIST 

 
Follow with a list of X, Y pairs 

separated by a space or a comma. 

 
PARAMETERS DISSIMILARITIES 

READ MATRIX 

 
DISSIMILARITYLIST 

 
MDSX's input is on two separate 

lines. 

 
PARAMETERS SIMILARITIES 

READ MATRIX 

 
SIMILARITYLIST 

 
MDSX's input is on two separate 

lines. 

 
PARAMETERS ATTRIBUTES 

READ MATRIX 

 
ATTRIBUTELIST 

 
MDSX's input is on two separate 

lines. 

 

 

3.0 MAIN SCREEN & PROGRAM CONTROL 
 

This section gives a detailed description of Permap's main screen.  It covers many fairly 

obvious aspects of operating Permap and can be skipped by users that are familiar with 

interactive computer programs that use a graphical interface. 

 

The MDS map is presented in the center of the screen.  Map identification information 

and the objective function value are given in the header section.  A group of control buttons 

allow real-time manipulation of the most important problem parameters. 

 

3.1 Header and Objective Function Value 

The title can be up to 65 characters long and the subtitle can be up to 98 characters long 

(a variable font is used so the exact number of characters depends on the specific characters 

involved).  Titles and subtitles are optional.  Just below the header is a line that shows the latest 

value of the objective function.  This value will converge to a minimum as the iterative solution 

process continues.  If the Auto Repeat option is being used, then just below the current objective 

function value the best-found value is displayed, followed by the number of times it has been 

found, followed by the total number of times the problem has been solved for the given set of 

parameters.  The number of times the best-found value has been found can depend on Auto 

Repeat's precision (convergence limit) setting.  Please see Section 3.5.4, Automatic Controls, for 

more information on this point. 

 

3.2 On-line Shortcut Controls 

The left side of the main screen has a group of shortcut buttons that allow easy control of 

the basic analysis parameters or functions while the solution process is continuing.  Each click on 

a shortcut button causes the selected parameter or function to rotate to the next setting.  For 

instance, by clicking on the Distance shortcut button, you can cause Permap to measure map 

distances using the Euclidean measure, then the City Block measure, then the general Minkowski 

measure, and then back to the Euclidean.  Holding down the shift key while clicking one of the 

shortcut buttons causes the rotation to reverse direction.  Each of these shortcut buttons has an 

associated shortcut key for those that prefer using the keyboard instead of the mouse.  See 

Section 3.6 for a list of the click and keystroke commands, or observe the underlined letter in 

each button's caption. 
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The shortcut controls duplicate features available through the menu system.  The menus 

give more information about each parameter or function, and in some cases allow more options 

to be controlled, while the main screen's shortcut buttons provide easier real-time control.  Note 

that the shortcuts only show alternatives that are consistent with the more detailed settings 

specified on the menu screens.  That is, if you use the Attributes screen to specify that only 

ordinal level attribute-to-dissimilarity functions be used, then the Attributes shortcut button will 

only rotate to the Spearman and Guttman correlation coefficients because they are the only 

ordinal level attribute-to-dissimilarity functions built into Permap.  

 

3.3 Parking Active Objects Control 

The parking lots are on the right side of the main screen.  Objects placed in the object’s 

parking lot are removed from the active data set.  This makes it easy to discover the influence of 

a particular object or attribute on the overall configuration.  Double click an object to move it 

into its parking lot.  Objects also can be dragged into the object parking lot.  To return an object 

to the active set just drag it out of the object parking and to the position you want it to be when 

the analysis continues.  Each time an object is parked or unparked, the map readjusts to represent 

the new active data set.   

 

3.4 Parking Active Attributes Control 

If your data file contains attribute information, just below the functional shortcut buttons 

will be a box that shows the "active attributes."  These attributes are used to calculate the 

dissimilarities by using any of several built-in attribute-to-dissimilarity functions.   

 

Double clicking on an attribute moves it to the attribute parking lot and the dissimilarities 

are recalculated using only the remaining active attributes.  A parked (inactive) attribute can be 

brought back into the active set by double clicking on it in the attribute parking lot. 

 

3.5 Execution Control 

A set of execution control buttons appears just below the map in the center of the screen.  

Execution of the program can be started, stopped, continued, jiggled, subjected to field 

movements, automatically stopped, or automatically started by using these controls.   

 

3.5.1 Start, Stop, Continue 

When Start is clicked, the objects are placed at random positions on the map and 

the iterative solution procedure is commenced.  The Stop button stops the iteration and 

displays the object labels if the labeling option has been selected (see Section 4.3.2).  If 

the solution has converged to a stationary value of the objective function but a stop signal 

has not been given, then the ellipses following the objective function value continue to 

blink.  If you want to resume iteration after a stop command has been sent (either from 

the Stop button, from Auto Stop, or from a click on an open area of the map) without 

using new starting positions, then click the Continue button.   

 

You might notice what appears to be a problem with the Continue command.  Say 

you are using dissimilarity data that describe a perfect circle, e.g., you are using the first 
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of the Special Cases built into Permap (see Section 9.0).  After finding the solution you 

drag an object out of the circle and into the object parking lot.  Then you click Continue 

and you expect nothing to change, but you find that all of the objects move a little.  Here 

is what is happening.  Your expectation that the map of all the remaining objects should 

not change is correct, and in fact their relative positions do not change.  The overall 

movement is because Permap maintains the map's centroid at (0, 0), and unless the object 

you removed was located precisely at (0, 0) the new centroid, i.e. the centroid after 

recalculation without the parked object, will be slightly different.  So, as soon as 

Continue is clicked, Permap moves all objects just a bit to return the centroid to (0, 0).  

MDS maps that differ only by translation, rotation, or reflection are considered to be 

identical, so the map of the remaining objects does not "change" even though it moves. 

 

3.5.2 Jiggle 

Clicking the Jiggle button causes the objects to be moved to new positions that are 

randomly perturbed from their existing positions.  This is called "jiggling the solution."  

A simple Jiggle click randomly displaces the objects a distance that averages 5% of the 

map diameter.  If the shift key is depressed while clicking Jiggle, the average 

displacement is 10% of the map diameter.  Using the control or alt keys causes average 

displacements of 20% and 40%, respectively. 

 

The Jiggle command contributes to understanding the nature of the solution.  For 

instance, it can provide information on the "depth of the potential well" that surrounds the 

object positions.  By slightly displacing the objects and watching the speed and directness 

of the reconvergence you can judge if the displayed map is clearly better than all 

neighboring configurations, or just one of several "almost as good" object placements.  

You may be surprised to find that some local minima can be very stable, even when 

subjected to large perturbations. 

 

3.5.3 Field Movements (Mirror, Rotate, Move, Zoom) 

Occasionally you will want to control the final orientation of a map in order to 

make a simple comparison to previous results, or you might want to expand a map to 

inspect a small, congested, area.  These needs can be satisfied by mirroring, rotating, 

moving, or zooming in.  These operations are known as "field movements" because the 

chosen operation applies to the whole field of objects.  The field movement controls are 

activated by clicking the Field button or right clicking the mouse on an open area.  

Alternatively, you can press the F-key.  To use one of the four field movement 

commands, first select the desired type and then use the mouse to control the execution of 

the movement.  If Mirror is chosen, then clicking near an axis will cause the map to be 

mirrored about that axis.  If Rotate is chosen, then dragging the mouse about the center of 

the map will cause the object set to rotate about the center.  If Move is chosen, then 

dragging the mouse in any direction will cause the object set to move in that direction.  

Finally, if Zoom is chosen, then dragging the mouse away from the center of the map will 

cause the object set to expand, and vice versa.  The results of all of these movements 

persist after the field controls are closed. 
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Remember that if a MDS solution is mirrored it still is a valid solution.  This is 

true for any type of MDS, badness measure, distance measure, and weighting scheme.  

The validity of a solution is similarly invariant to all rotations, but only if the Euclidean 

distance measure is used.  If City Block or any Minkowski distance measure with p not 

equal to 2 is used, then only 90 degree rotations do not change the optimality of a 

solution.  This can be demonstrated by solving a problem using the City Block distance 

measure, then rotating the solution about 45 degrees, and then continuing the solution.  

The map will immediately rotate 45 degrees to again reach optimality. 

 

3.5.4 Automatic Controls 

The Auto Repeat and Auto Stop check boxes control whether or not the solution 

process automatically stops, and then possibly automatically restarts, after a certain 

convergence limit (as set using the Convergence menu) is reached.  These controls 

facilitate finding numerous solutions, each starting from a new set of random positions, to 

be sure that a global minimum has been found. 

 

If you are having trouble finding the global minima you might like to let the 

computer run all night and have it record the best solution it finds.  To do this, check 

Auto Repeat and Auto Stop, and just let the program run.  The best-found value is 

displayed in brackets just below the current objective function value.  Next to the best-

found value is the number of times that the best-found value has been found, followed by 

the number of times the problem has been solved using the current set of parameters.   

 

The number of times the best-found value has been found is influenced by Auto 

Repeat's precision (i.e., convergence limit) setting.  When the convergence setting is on 

"low precision" all values within 0.0005 of the best-found value are counted, when it is 

on "normal precision" this tolerance is 0.00005, and when it is on "high precision" it is 

0.000005.  If your goal is to quickly scan many cases, then use a low precision setting.  

However, if there are several mappings (local minima) that have objective function 

values that are close together it will be difficult to determine how many times the best-

found mapping actually has been found.  In these cases it is important to use the high 

precision setting.  Also, some ordinal MDS solutions tend to pulsate and transient 

objective function values can be caught when the precision value is too low.  So, when 

finalizing your work it is important to use the high precision setting.  If in doubt, reload 

(see below) the best-found solution and let Permap work on it for an extended period of 

time.  If the objective function value decreases, then you caught a transient configuration 

with the automatic stop feature. 

 

The complete details of the best-found solution are stored in the file 

PermapBestSolnFound.txt.  The PermapBestSolnFound.txt file can be reloaded via the 

File menu to continue your analysis at a later date.  A shortcut to reloading the last best-

found file is to press F7 and then select SaveExitReload from the menu bar.   

 

You will find that many "real" MDS problems have several local minima and 

need the Auto Restart feature to capture the global minima.  The Ekman (1954) color 
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comparison data that is provided in EXAMPLE_A.txt is typically susceptible (correct 

answer: using ratio MDS, Euclidean distance, two dimensions, and normalized Stress, the 

objective function value is 0.01721).  The topic of finding global versus local minima 

leads to the topic of using certain "smart" starting points to help the solution procedure 

converge to a global minima.  See Section 11.0, Solution Difficulties, for more 

information on this important topic. 

 

3.6 Click & Keystroke Commands  

Experienced users often want the fastest possible ways of controlling program execution 

even if the commands are not particularly intuitive.  Here are some such control techniques using 

the mouse, keystrokes, or combination keystrokes.  All of these apply while the main screen has 

the focus.  The familiar Windows cut, paste, and select commands still work in an edit window, 

even though their control keys have been usurped when the main screen is active. 

 

Mouse shortcut controls: 

 Clicking an open area toggles between the Stop and Continue buttons.   

 Double clicking an open area is equivalent to clicking the Start button. 

 Double clicking an object parks the object. 

 Double clicking an attribute number parks the attribute. 

 Right clicking an open area reveals the field movement’s controls. 

 Control clicking an object toggles between locking and unlocking the object's position. 

 

Keystroke shortcut controls: 

 F1 opens the help file 

 F2 opens the file selection dialog box 

 F3 opens the special cases screen 

 F4 opens the active data file 

 F5 opens the last-saved solution data file     

 F6 opens the last-saved short solution data file     

 F7 opens the best-saved solution data file (saved by Auto Repeat feature) 

 

 A-key changes the Attributes function 

 B-key changes the Badness function 

 C-key clicks Continue 

 D-key changes the Distance function 

 F-key reveals the Field Movements controls 

 E-key changes the level of Dij Precision 

 J-key clicks Jiggle 

 M-key changes the Mapping Weights function 

 N-key changes the number of Dimensions in the solution 

 P-key clicks Stop 

 S-key clicks Start 

 T-key changes the MDS Analysis Type function 

 X-key clicks Exit 

 Y-key changes the Boundary size 
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 esc-key clicks Exit 

 

Alternate-key shortcut controls: 

 alt-A opens the Analysis Parameters menu 

 alt-B opens the Attributes-to-Dissimilarities screen 

 alt-C opens the Special Cases screen (same as F3) 

 alt-E opens the Edit menu 

 alt-F opens the File menu 

 alt-H opens the Help menu 

 alt-N opens the Convergence screen 

 alt-P opens the Map Evaluation menu 

 alt-V opens the View screen 

 

Control-key shortcut controls: 

 ctrl-A opens the Attribute Evaluation screen  

 ctrl-B opens the Objective Functions selection screen 

 ctrl-D saves the existing analysis settings to file PermapDefaults.dft 

 ctrl-L opens the Links Evaluation screen 

 ctrl-M opens the Mapping Weights selection screen 

 ctrl-N opens the Dimensions and Boundary selection screen 

 ctrl-O opens the Objects Evaluation screen 

 ctrl-P prints the screen using the Windows PrintScreen command 

 ctrl-S saves the input data and the solution to file PermapSolutionLongFmt.txt 

 ctrl-T opens the MDS Types and Error Bounds selection screen 

 ctrl-Y changes the Boundary size at a slower rate than the Y-key 

 

3.7 Locking Object Positions 

You may want to fix the position of one or more objects on the map in order to make an 

in-depth study of sub-optimal configurations.  This situation could occur, for instance, if you are 

absolutely confident of the relative positions of certain major objects, but are unsure whether or 

not more arrangements of the minor objects are reasonable.  

 

Locking an object's position can be done by holding down the control key while clicking 

the object.  Unlocking an object is done similarly, that is, hold down the control key and click on 

the locked object.  Locked objects can be dragged to a new positions.  The field movement 

options, mirror, rotate, move, and zoom can move locked objects because in these cases the 

whole object set is being modified and relative positions do not change.   

 

Even with some of the geometrically simple cases stored in Permap's special cases library 

it is common to discover unexpected solutions when one or more objects are locked in place.  

These special-situation solutions should not be dismissed out of hand.  One should first ask 

"could something in the environment cause one or more objects to be less mobile than the 

others."  If so, sub-optimal solutions may represent a physical reality.   
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4.0 FILE, EDIT, VIEW 
 

This section describes the use of Permap's system of menus.  As with Section 3.0, it can 

be skipped by users that are familiar with Window-based interactive computer programs. 

 

4.1 File Menu 

The File submenus provide several ways to load, save, or print data.  These Input/Output 

submenus use the format common to all Windows-compatible applications.  The shortcut key for 

this option is alt-F. 

 

4.1.1 Load Data from Existing Files 

Data are entered in either of two ways.  Data can be read from a text file or 

entered automatically by selecting any of several special case data sets (see Section 9.0).  

The format of the data file is described in Section 2.3, Appendix I, and Appendix II.  In 

addition to using the menus, the F2 function key provides a shortcut that automatically 

opens the input file dialog box.  The F4 function key provides a shortcut that 

automatically opens the active data file so that it can be reviewed or edited.  The F5, F6, 

and F7 function keys allow reloading the three kinds of "saved solution" files. 

 

4.1.2 Load Data From a Special Case 

The Special Cases screen can be opened using the F3 shortcut, or by following the 

submenu File/Load Data From a Special Case.  Due to requests from the "one click 

mouse people," it has been duplicated as a top level Special Cases menu.  Thus, it also 

can be opened by the alt-C keystroke or by one click to the menu tab.  Please refer to 

Section 9.0 for its operation. 

 

4.1.3 Enter New Data 

If you want to define a new problem, often it is easier to call up an old data file, 

modify it, and then use Save As (described in the next section) to save it with a new 

name.  This approach can be easier because it provides a "template" to guide your new 

entries.  However, sometimes you will be pasting data from some other media, and it will 

be easier to start with a clean slate.  To start from scratch, use File/Load Data From a 

Text File, or ctrl-N, and a text box will open.   

 

The default file name for the new file is "NewProblem.txt."  You can type entries, 

cut, paste, copy, etc. in the text box.  To avoid overwriting valuable data the new data is 

not automatically saved upon exiting this window, so be sure to explicitly save it when 

finished.  Normally, you will use the Save As option to give it some name other than 

NewProblem.txt so that the original file will not be erased if a later Permap user decides 

to use this option. 

 

4.1.4 Save Results & Settings 

Solution results and analysis settings can be saved to a file.  There are four 

options.   
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 The first option, File/Save Solution (Long Format), preserves all input values 

needed to completely specify the problem and completely specify its solution.  Because it 

includes printing the distance and dissimilarity matrices this file can be very large when 

the number of objects is large.  The information is written to the text file 

PermapSolutionLongFmt.txt.  If PermapSolutionLongFmt.txt already exists, it is 

overwritten.  This solution file has keyword headers suitable for restarting the analysis at 

the state existing when the save command was given.  That is, the output file 

PermapSolutionLongFmt.txt can be used as an input file.  The shortcut key for this option 

is ctrl-S. 

 

 The second option, File/Save Solution As … (Long Format), does the same as the 

previous option except that it allows the specification of a different file name. 

 

 The third option, File/Save Solution (Short Format), writes out an abbreviated file 

that fully specifies the solution, but does not repeat all the input data that define the 

problem.  The file name is PermapSolutionShortFmt.txt and any other copy of 

PermapSolutionShortFmt.txt is overwritten.  The shortcut key for this option is ctrl-R. 

 

 The fourth option, File/Save Current Settings As Defaults, saves all existing 

settings to the defaults file, PermapDefaults.dft.  This allows restarting Permap with all of 

the existing settings.  Thus, once you decide on a set of preferred settings these settings 

need not be reset each time Permap is started.  The shortcut key for this option is ctrl-D. 

 

 If you want to read or edit any of these saved solution files, including the one that 

is automatically saved by the Auto Repeat feature, use the Edit menu or the F5, F6, or F7 

function keys. 

 

4.1.5 Reload Original Default Settings 

When a program has as many parameters as Permap has it is easy to get "lost" and 

not be able to return to previously used conditions.  Most often, this occurs because some 

obscure setting has been changed and forgotten about.  Selecting File/Reload Original 

Default Settings will cause Permap to reset all parameter settings to commonly used 

settings and write out a new default file with these settings.  If you are sharing a Permap 

installation with others, it may be advisable to start each session by clicking File/Reload 

Original Default Settings. 

 

4.1.6 Printing Results 

Most analysis time is spent examining maps drawn on the computer screen.  

However, at some point a paper copy is usually needed.  There are two approaches to 

getting the MDS map onto a piece of paper.   

 

The first approach is to use the information provided by Permap to construct and 

print a map using a graphics application.  This can be done, for instance, by saving the 

object's coordinates using one of the File/Save commands discussed in Section 4.1.4, and 
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then importing the saved object coordinates into a graphics or spreadsheet application to 

prepare a presentation-quality map.   

 

 The second approach is to save the map to the Windows clipboard by using the 

PrtScn key to capture the entire screen, or alt-PrtScn to capture just the active window, 

and then open Paint or another graphics application and paste the clipboard contents.  

After modifying the map as desired, it can be printed from within the graphics 

application.   

 

 The third approach is to have the Windows operating system print the screen 

directly to your attached printer.  This can be done using "File/Print Screen (Std. 

Windows)" or the shortcut key ctrl-P.  Windows does not allow control over placement 

(output will be in the upper left of the printer's page) or size (the output will be truncated 

if it exceeds the dimensions of the paper).  You will probably want to change the 

orientation of your printed page to “landscape.”  Do this with the following sequence: 

Start Button → Settings → Control panel → Printers and Faxes → (select the printer you 

will be using) → File → Printing Preferences → Landscape. 

 

 

4.2 Edit Menu 

The usual Windows editing keystrokes work when an editing window is open.  That is, 

ctrl-A selects all, ctrl-C copies the selected content to the clipboard, ctrl-X cuts the selected 

content and copies it to the clipboard, and ctrl-V pastes the contents of the clipboard at the 

position of the cursor.  Note that these shortcut keys work as described only within an editing 

window.  For instance, if ctrl-A is pressed when the main screen is active it opens the Attributes 

Evaluation screen, but when pressed inside an editing window it is the traditional "Select All" 

command.   

 

The following Edit screens are most easily opened using the F1, F4, F5, F6, and F7 

shortcut keys.  Because you may forget which function key goes with which edit screen, just like 

we do, these shortcuts have been set up to return you to the main screen if they are pressed twice.  

That is, pressing F1, etc., twice results in no net change.  This makes it easier to "just hit 

something" when you want to edit one of the three main data files and you don't remember which 

function key is the correct one. 

 

4.2.1 Edit Active Data File 

You may edit your data file (or any other ASCII file for that matter) from inside 

Permap.  Enter the Edit menu and choose the Edit Active Data File selection.  It will open 

the data file and allow you to use all the usual Windows keystrokes.  If you want to work 

on another file, use the File option from within the Edit menu.  The shortcut key for this 

option is F4. 

 

If you change the active data file, the changes do not automatically take affect for 

the problem that is loaded.  You must first save the modified file (ctrl-S), exit the Edit 

menu, and reload the file that you just saved to have Permap analyze the data.  
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Alternatively, you can use the SaveExitReload menu item to do this series of steps 

automatically. 

 

4.2.2 Edit Help File 

The Edit menu also has the option of opening the help file (PermapHelp.txt).  This 

file contains several sections of this manual that contain operational details.  It is 

basically just a reminder list.  It is made available through the Edit menu so that you can 

make notes in the help file, and then save the file for future reference.  Thus, with time 

the help file becomes your personalized help file.  The shortcut key for this option is F1.   

 

4.2.3 Edit Solution Files 

The Edit menu allows easy access to the problem solution files 

(PermapSolutionLongFmt.txt, PermapSolutionShortFmt.txt, PermapBestSolnFound.txt), 

i.e., the files you formed by using ctrl-S, ctrl-R, or the File/Save Solution menus, or the 

file that is automatically saved by the Auto Repeat feature.  Often you might want to 

consult one of these files to find some numerical value of a parameter for a solution that 

is under study.  Or, you might want to change some particular parameter's value and then 

watch what happens when the problem is rerun.  The shortcut keys for these options are 

F5, F6, and F7.  As with the Active Data File case, changes to 

PermapSolutionLongFmt.txt and PermapBestSolnFound.txt can be automatically saved 

and reloaded to be the active data file by using the SaveExitReload menu item.  This 

cannot be done with the PermapSolutionShortFmt.txt file because it does not have all the 

information necessary to fully describe the problem. 

 

4.3 View Menu 

Selecting the View menu opens the View Screen that lets you control the look of the 

MDS map.  The shortcut key for this option is alt-V. 

 

4.3.1 Object Representation 

You can customize the appearance of your map by selecting the object size, object 

border width, and object border color.  Each option is explained in a text box at the right 

side of the View screen and a demonstration map at the bottom-right of the screen 

illustrates the current settings.  When you are analyzing large problems it is beneficial to 

reduce the circle size to minimize overlaps and thus clarify the map.   

 

4.3.2 Object Identification 

User-supplied names, preferably just a few characters each, can be used to 

identify the objects once the analysis is stopped.  Or, the objects can be automatically 

numbered in the order they are entered in the data file.  As useful as these options are for 

small problems, maps with many objects quickly become congested.  For large problems, 

the naming option should be turned off by selecting the "none" option.   

 

Object names are displayed only when the solution (process iteration) has 

stopped.  You can stop the process by using the Stop key.  Alternatively, you can toggle 
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between the Stop and Continue states by a single mouse click on an open space on the 

map. 

 

4.3.3 Unit Circle and X-Y Axes 

Some users prefer to show a unit circle on map.  All metric dissimilarity matrices 

generate object positions that lie within this circle.  You turn on this feature with the first 

entry under View/Mapping Space. 

 

The second Mapping Space entry controls the display of an X-Y coordinate 

system.  The X-Y coordinate system described here is the internal system that is used to 

make the calculations and place the objects on the map.  While some users like to show 

these coordinates, they are easily misunderstood and probably should not be shown 

unless you are making a City Block or some other non-Euclidean distance analysis.  

These coordinates are not related to the interpretative coordinates that the researcher 

assigns to the map. 

 

 

5.0 ANALYSIS PARAMETERS 
 

A complete MDS analysis description requires specifying the type of MDS analysis, the 

objective function (badness and distance measures), mapping weights, solution dimensionality, 

boundary conditions, and the nature of the attributes being used (if any).  The Analysis 

Parameters set of submenus let you specify all of these aspects and assists in testing the affect of 

changing dissimilarity precision via the Precision control button.  Open this menu with alt-A or 

by clicking on the Analysis Parameters menu. 

 

5.1 MDS Analysis Types 

The first option in the top box on the left side of the MDS Types and Error Bounds 

selection screen allows selection of the type of MDS analysis to be made.  This selection also can 

be made by clicking the MDS TYPE shortcut button or by opening the MDS Types and Error 

Bounds submenu using ctrl-T. 

 

Permap can make ratio, interval, or ordinal analyses, as well as ratio and interval analyses 

with error bounds.  After providing some general comments on MDS terminology, each of these 

methods is described in detail.  The specific formulas used to match analysis type to the 

objective function are given in Section 5.2. 

 

5.1.1 Metric and Nonmetric Terminology 

Traditionally, MDS analyses are classified as metric or nonmetric.  These terms 

are not entirely satisfactory because of their imprecision, but they persist.  More 

precisely, one should classify MDS analyses based on the relationship between the map's 

inter-object distances dij and the dissimilarity Dij values.  There should be at least three 

major types of MDS analysis.  First, if the algorithm seeks to find dij such that dij / Dij = 

k1, where k1 is an arbitrary constant that determines the size of the map, then the MDS 

algorithm is at the ratio level.  Second, if the algorithm seeks to find dij such that (dij - 
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dkl)/ (Dij - Dkl) = k1, then the MDS algorithm is at the interval level.  Third, if the 

algorithm seeks to find dij such that Dij < Dkl implies dij < dkl, then the MDS algorithm is 

at the ordinal (rank order) level.  Based on these considerations, an MDS analysis should 

be classified as ratio, interval, or ordinal instead of metric or nonmetric.   

 

Ratio and interval levels of information are two examples of metric information.  

Ordinal information is an example of nonmetric information.  The word "metric" harks 

back to "measurement" and signifies that measured distances on the map are linearly 

related to the Dij values.  If you simply ignore the important difference between ratio and 

interval levels of information, you arrive at the historical terminology where all MDS 

analyses are classified as metric or nonmetric 

 

5.1.2 MDS and Error Bounds 

Permap provides two new nonmetric kinds of analysis that involve applying error 

bounds to ratio and interval level data.  Thus, Permap makes traditional ratio (metric), 

interval (metric), and ordinal (nonmetric) MDS analyses, and adds ratio + bounds 

(nonmetric) and interval + bounds (nonmetric) analyses.  Before presenting precise 

definitions of the various types of MDS maps that Permap can make it is important to 

understand the role of error bounds and why the traditional forms of MDS have ignored 

the error bounds approach.  

 

Every experimental measurement has some associated uncertainty.  However, if 

the MDS computer program does not have the ability to use the uncertainty information, 

you must either make the invalid assumption that the dissimilarities should exactly 

control the distances between objects (traditional metric analyses), or make the unrealistic 

assumption that the dissimilarities are so poorly known that only their rank order can be 

trusted (traditional nonmetric analyses).  You should not be forced to choose between 

these two extremes.   

 

Metric MDS is based on the reasonable "first order approximation" that the input 

data are linear in the construct of interest and are errorless.  In the physical sciences the 

second step usually is to relax the assumption of errorless data and to introduce error 

bounds.  However, the development of MDS did not follow the usual path.  Early MDS 

critics were fixated on the point that behavioral science measurements often are very 

imprecise.  The result was that metric MDS was not modified to accept error bounds.  

Instead, ordinal MDS was developed and it essentially took over MDS.  There are even 

comments in the early MDS literature referring to the "near magical" nature of ordinal 

MDS.  The ordinal advocates, in effect, chose to discard useful information simply 

because not all of the information was at a high level of reliability. 

 

Here is an example of what happened.  Say you have measurements, or estimates, 

yielding dissimilarities of 1, 1.05, 1.1, 8, 9, 10, and 19.  It is quite possible that your 

experimental uncertainty is such that you cannot prove that the first three cases are truly 

different from each other.  Also, it is quite possible that while you are sure that cases four 

through six are properly ordered, you are not at all sure that there is exactly one unit of 
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difference between them.  As a result, ordinal advocates argue that the analysis should 

proceed as if the dissimilarities maintain the rank order of the original data, and that is all.  

Their analyses would use pseudo Dij of 1, 2, 3, 4, 5, 6, and 7 in place of those shown 

above.  Certainly the ordinal advocates have valid concerns.  Dij data are often fraught 

with imprecision.  But, just because some relationships are uncertain it does not follow 

that the whole data set should be treated as ordinal.  There is little doubt that you know 

the seventh data point is far higher than just one step above the sixth, and that the 

differences in the first group of three clearly are not the same as the differences in the 

second group of three.  

 

The correct way to approach most data sets is to ignore the old metric vs. 

nonmetric arguments and simply face the fact that all experimental data have error.  

Doing so suggests that every entry should have a best-estimate value and associated error 

bounds.  There are many ways to specify error bounds, but the differences are relatively 

unimportant compared to the importance of avoiding the mistake of degrading to an 

ordinal analysis when it is not necessary to do so.  If, for example, all of the 

dissimilarities mentioned above have associated uncertainties of  0.2, and an analysis is 

made taking these error bounds into considerations, then the first three dissimilarities 

points will be treated as being essentially the same.  And, the far-different last 

dissimilarity (i.e., 19) will still be recognized as being far different from the others.  

Nowhere do we claim that we know the true values of each dissimilarity, but we do 

preserve the significant differences that we do know to be correct.   

 

To restate the forgoing argument in less quantitative terms, we can say that while 

our measurements of some quantity may be sufficiently inaccurate that we cannot assign 

precise values we may be able to say much more than just what rank order the quantities 

have.  Sometimes we can justifiably say that one value is "a little greater than," "much 

greater than," or "very much greater than," another value instead of just saying one is 

greater than the other.  

 

5.1.3 Procedural Details for Each Analysis Type 

In the following sections each type of MDS analysis is defined in terms of its 

quantitative relationships.  The formulas behind these definitions are given in Section 5.2. 

 

5.1.3.1 Ratio 

A ratio MDS algorithm attempts to find a set of dij that approximately 

satisfies the relationship dij / Dij = k1, where k1 is an arbitrary constant that 

determines the size of the map.  This is the same thing as saying the goal is to find 

a set of dij such that a linear relationship dij = k1 Dij is fit as well as possible.  In 

Permap, k1 is always unity because the dissimilarities or similarities are scaled to 

a maximum of one immediately upon data entry.  Therefore, k1 drops out of 

Permap's internal equations, and is omitted from the formulas outside of Section 

5.1.   

 

5.1.3.2 Ratio + Bounds 
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A ratio + bounds analysis attempts to find dij that satisfy dij / Dij = k1, but 

the objective function is not penalized as long as dij is within the range k1 (Dij  

eij) where eij represents the error or uncertainty in Dij.  Permap can handle two 

types of error terms.   

 

The first option in the second box on the left side of the Analysis Type and 

Error Bounds selection screen is the one that most new users should start with.  It 

simply assumes that each Dij term is subject to the same uncertainty  eij.  While 

this approximation may not be precisely correct, it is often a good starting point.  

By clicking on the up or down arrows, the bounds can be set anywhere up from 0 

to1.  If the error bounds are set to 0, then this option becomes identical to the 

traditional ratio analysis and is eliminated from the rotation when the MDS TYPE 

shortcut button is used. 

 

The second option is best for those situations where the uncertainty is 

proportional to the size of the factor being measured.  This is often the case in 

physical measurements.  This option assigns uncertainties of plus or minus some 

constant times Dij.  By clicking on the up or down arrows, the percentage error 

bounds can be set anywhere from 0% to plus or minus 100% of Dij.  If the error 

bounds are set to 0%, then this option becomes identical to the traditional ratio 

analysis and is eliminated from the rotation when the MDS TYPE shortcut button 

is used. 

 

5.1.3.3 Interval 

An interval MDS algorithm attempts to find a set of dij that at least 

approximately satisfies the relationship (dij - dkl)/ (Dij - Dkl) = k1, where k1 is an 

arbitrary constant that determines the size of the map.  This is the same thing as 

saying that the goal is to find dij that at least approximately satisfies the 

relationship a dij = IC + k1 Dij, where IC is the Interval Constant.  As was 

mentioned in Section 5.1.3.1, in Permap, k1 is always unity.  Thus, it is omitted 

from further discussion and is omitted from the formulas outside of Section 5.1.  

When making an interval MDS analysis, Permap finds the value of IC that 

minimizes the objective function and displays it in the caption of the MDS TYPE 

shortcut button. 

 

The practical difference between interval and ratio MDS is that in interval 

MDS uncertainty about the true zero point of the Dij data is acceptable.  In certain 

situations this is very important.  For instance, when using Likert-like scales it can 

happen that one is uncertain that test subjects are responding such that the bottom-

level response represents a true zero point for the construct under study.  Special 

Case 6 provides data that illustrate how switching from a ratio analysis to an 

interval analysis can clarify the hidden structure in such a data set.  Note that if 

your Dij values come from some source that has a reliable zero-to-one range, such 

as correlation coefficient data, then using interval MDS is not appropriate.  You 

should not introduce a new parameter (IC in this case) just to find a lower 
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objective function value.  Any new parameter must have sufficient "face validity" 

that its critics will agree that it makes sense to add it to the model. 

 

Interval MDS has several quirks that may be confusing to the new user.  

First, all simplex cases (this includes the regular tetrahedron and the 10-object and 

24-object simplex examples provided in Permap's library of special cases) have, 

by definition, all non-diagonal Dij values equal.  If you are allowed to shift the Dij 

zero point, as interval MDS does, a valid solution can be found by reducing all 

effective Dij values (i.e., IC +  k1 Dij) to zero and thus allowing the objective 

function to go to zero.  Thus, interval analyses of simplex data will always result 

in all objects being superimposed.  This is not a degenerate solution.  It is a true 

solution.  Second, adjusting the interval constant to minimize the objective 

function may or may not minimize R
2
, the figure of merit used in the Links 

Evaluation screen.  Usually, minimizing the objective function and minimizing R
2
 

go hand-in-hand, but not necessarily so.  It depends on the objective function that 

is being used.  Try using SStress, Interval, and the Three Perpendicular Vectors 

special case data.  The expected "solution," that is, the analog to the Stress, 

Multiscale, and Fractional cases, will not occur.  Finally, there are strong bounds 

on the value of the interval constant.  This is an important point that deserves 

expansion. 

 

Calculation of the interval constant can be done in two ways.  A strict 

interpretation holds that, to make sense in terms of what a dissimilarity means, an 

effective dissimilarity (IC + k1 Dij) must be bounded by zero and one.  So, if your 

dissimilarity data set has even one Dij = 0 entry then the interval constant cannot 

be less than zero, and if it has even one Dij = 1 entry then the interval constant 

cannot greater than zero.  In these situation, changing from ratio to interval MDS 

will make no difference at all because the interval constant can have no value 

other than zero. 

 

5.1.3.4 Interval + Bounds 

Interval + bounds analyses are similar to ratio + bounds MDS analyses.  

Please see Section 5.1.3.2 above.  The objective function is not penalized as long 

as dij is within the range IC + k1 (Dij  eij) where eij represents the error or 

uncertainty in Dij.  

 

5.1.3.5 Ordinal 

An ordinal analysis seeks dij values such that if Dij < Dkl then dij < dkl.  

This means that the objective function is not penalized as long as the calculated dij 

are in the same rank order as the Dij.  

 

When an ordinal analysis is specified, Permap treats ties using the so 

called "primary" convention.  That is, all objects of equal rank need not have the 

same position on the map.   
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5.1.4 Object Centering 

The nonmetric forms of MDS, i.e., ratio + bounds, interval + bounds, and ordinal 

may only determine the object positions to within certain limits.  Because all object 

positions that are "within the bounds" or "in the right order" contribute zero to the 

objective function value, there may be infinitely many possible solutions.  In reality, 

these alternative solutions usually are tightly constrained and thus the map does not have 

any variation at all.  However, if the error bounds are large, or if an ordinal analysis is 

being made with only a few objects, having multiple equally valid solutions can be 

objectionable.  In this case, one might want to ask that the objects be placed at the center 

point between the error bounds or at the mid point between objects of adjacent ranks.   

 

Centering can be achieved by adding a "junior term" to the objective function.  

This term must be small enough that it does not affect an object's position when that 

position is being determined by balancing conflicting dissimilarities, but it must be large 

enough that it can "nudge the objects over" when they are "between the bounds."  This 

goal is achieved by adding a term to the objective function that is one tenth as large as the 

normal terms, and is anchored to the applicable midpoint rather than being zero anywhere 

inside the applicable boundaries.  Note that when the centering option is used the value of 

the objective function increases very slightly.  This is a necessary artifact of the centering 

procedure.  It does not indicate that the solution is inferior in any way.  It simply means 

that another requirement has been placed on the solution and that the "cost" of this extra 

requirement is being reflected in the value of the objective function.  

 

Centering is controlled by the third option box on the right side of the MDS Types 

and Error Bounds selection screen.  Of course, if you are using regular (i.e., no bounds) 

ratio or interval MDS then the centering feature has no affect. 

 

5.2 Objective Functions 

The second submenu of the Analysis Parameters menu allows specification of the 

objective function, which involves specifying the form of the objective function, the badness 

function, and the distance measure.  The badness and distance problem parameters can be 

controlled using the Badness and/or Distance shortcut buttons on the main screen.  This allows 

you to quickly scan a variety of solution types while watching the map as it shifts to satisfy the 

new settings.  The Objective Functions submenu can be opened using ctrl-B. 

 

5.2.1 Objective Function Form 

The objective function goes by many different names.  For instance, some 

disciplines call it an error function, loss function, criterion function, merit function, and 

so forth.  It is simply a mathematical formula that is maximized or minimized in the 

process of solving a problem.  It is the accumulation of one or more terms that get bigger 

(or smaller in the case of a merit function) as the objects are moved away from a good 

configuration. 

 

In some early MDS papers the objective function was completely unspecified.  

The steps used to optimize "something" were described, but exactly what was being 
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optimized was never defined!  This may seem almost unbelievable to new MDS 

researchers, but it makes sense when you consider the progress that has been made in our 

ability to quickly make a large number of calculations.  Before the early 1960s 

computational difficulties were so great that the precise details of making a MDS map 

took precedence over the bigger picture involving the mathematics of the problem's goal 

and constraints.  Nowadays, just the opposite is true.  This manual, for instance, reflects 

the trend of emphasizing the description of the problem, assumptions, and constraints, 

rather than the solution procedure.  This separation can be noted by the little space given 

to numerical analysis techniques (Section 10.0) compared to the great amount of space 

given to the definition and description of the problem and solution (Sections 1.0 through 

8.0). 

 

Most objective functions are defined to be the sum over all object pairs of the 

pair's weight factor times the square of the pair's badness measure Bij.  This is called a 

weighted sum-squares form.  Mathematically, the sum-squares objective function 

equation is: 

 

Sum-Squares form: Objective Function =  [SUM(all i, j < i) Wij Bij
2
 ] / NC 

 

Ignore for now the normalizing constant, NC.  It will be described in Section 

5.2.4.  Focusing only on the form of the above equation, one can see how the individual 

badness terms are combined to form the quantity to be minimized.  This separation 

between the definition of Bij and how the Bij are accumulated represents a level of rigor 

that is not always adhered to.  Some authors implicitly assume a form for the combination 

of the badness terms and then use the badness name for the name of the objective 

function.  This causes some confusion.  For example, if one says that Stress is the criteria, 

does that specify how badness is measured or how the entire objective function is 

defined?  Both usages can be found in the literature.  Here, we takes Stress, Stress1, 

SStress, Multiscale, and Fractional to define the badness measure, but it is just as 

common to find authors that use these terms to specify the overall objective function. 

 

The sum-squares form of the objective function is the most commonly used form.  

This may be because it is very simple while still being an analytical function (i.e., all 

derivatives exist) and an even function (i.e., f(x) = f(-x)), or perhaps it is because of the 

analogy with common statistical estimators that are based on maximum likelihood 

arguments.  For whatever reason, it was used by the originators of the badness terms 

Stress, SStress, Multiscale, and Fractional.  However, you will find other objective 

functions that use a "root-sum-squares" form.  For instance, Kruskal introduced Stress1 

and Stress2 (Kruskal's Stress2 never gained wide acceptability and is not discussed 

further here) that use the root-sum-squares form.  Mathematically, the root-sum-squares 

objective function equation is: 

 

Root-Sum-Squares form:  Objective Function = SQRT{[SUM(all i, j < i) Wij Bij
2
 ] / NC} 
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Even though the root-sum-squares form was used originally to define Stress1, you 

will find some early papers that redefine Stress1 using the sum-squares way of combining 

the badness terms.  Similarly, even though the sum-squares form was used by the 

originators of SStress, some papers use a root-sum-squares formula for it.  Clearly, the 

situation is confusing.  It would be better had the early workers in the field given more 

thought to maintaining consistency in their definitions, but it didn't happen.  The situation 

is tolerable only because it makes no difference to the configuration of the map whether 

the sum-squares or root-sum-squares form is used.  The only difference lies in the value 

of the objective function that is reported for a particular map.  The root-sum-squares form 

makes Stress1 values considerably larger than Stress and all the other objective functions 

which use the sum-squares form.  In fact, making the values larger was Kruskal's stated 

reason for using the square root in his definition. 

 

Permap uses the definition which conforms to the originator's definition.  Thus, it 

is to be understood that the Stress1 badness always uses the root-sum-squares form of the 

objective function and that all the rest use the sum-squares form.  This means that if you 

use the BADNESS FN shortcut button to cycle through the various badness functions the 

objective function value will increase significantly when Stress1 is activated whereas the 

other functions will have values that are of comparable magnitude.  

 

Because MDS maps found using Stress and Stress1 are exactly the same (because 

the badness function is exactly the same), one might want to eliminate one or the other 

from the BADNESS FN shortcut rotation list.  This can be done using the option box at 

the lower left side of the Analysis Parameters / Objective Functions screen.   

 

5.2.2 Badness Functions 

A badness function is simply a definition of what it is that makes the positions of 

a pair of objects be bad.  Fundamentally, the object pair should be separated by a distance 

that is consistent with the pair's dissimilarity.  Thus, the badness Bij should involve a 

measure of the mismatch between dij and Dij.  There are several valid ways of defining 

this mismatch. 

 

Permap offers the five most common types of badness measure, Stress, Stress1, 

SStress, Multiscale, and Fractional.  Because the badness formulas for Stress and Stress1 

are identical they are combined here.  Remember, however, that Stress and Stress1 imply 

different methods of combination to form the objective function.  Each of the five 

badness types must be adjusted for the type of MDS being used.  We start with Ratio 

MDS because it most clearly shows the underlying nature of the badness relationship 

between dissimilarity and distance. 

 

Ratio MDS 

 

Stress & Stress1:  Bij = dij - Dij 

 

SStress:    Bij = dij
2
 - Dij

2
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Multiscale:   Bij = ln(dij / Dij) 

 

Fractional:   Bij = (dij - Dij) / Dij 

 

 

Ratio + Bounds MDS 

 

Stress & Stress1:  If dij > Dij + eij  Then  

Bij = dij - Dij - eij 

ElseIf dij < Dij - eij  Then  

Bij = dij - Dij + eij 

Else  

Bij = 0 

EndIf 

 

SStress:    If dij > Dij + eij  Then  

Bij = dij
2
 - (Dij + eij)

2 

ElseIf dij < Dij - eij  Then  

Bij = dij
2
 - (Dij - eij)

2
 

Else  

Bij = 0 

EndIf 

Multiscale:   If dij > Dij + eij  Then  

Bij = ln(dij / (Dij + eij)) 

ElseIf dij < Dij - eij  Then  

Bij = ln(dij / (Dij - eij)) 

Else  

Bij = 0 

EndIf 

 

Fractional:   If dij > Dij + eij  Then  

Bij = (dij - Dij - eij) / (Dij + eij) 

ElseIf dij < Dij - eij  Then  

Bij = (dij - Dij + eij) / (Dij - eij) 

Else  

Bij = 0 

EndIf 

 

Interval MDS 

 

Stress & Stress1:  Bij = dij - IC - Dij 

 

SStress:    Bij = dij
2
 - (IC + Dij)

2
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Multiscale:   Bij = ln(dij / (IC + Dij)) 

 

Fractional:   Bij = (dij  - IC - Dij ) / (IC + Dij) 

 

 

Interval + Bounds MDS 

 

Stress & Stress1:  If dij > IC +  Dij + eij  Then  

Bij = dij - IC - Dij - eij 

ElseIf dij < IC + Dij - eij  Then  

Bij = dij - IC - Dij + eij 

Else  

Bij = 0 

EndIf 

 

SStress:    If dij > IC + Dij + eij  Then  

Bij = dij
2
 - (IC + Dij + eij)

2 

ElseIf dij < IC + Dij - eij  Then  

Bij = dij
2
 - (IC + Dij - eij)

2
 

Else  

Bij = 0 

EndIf 

 

Multiscale:   If dij > IC + Dij + eij  Then  

Bij = ln(dij / (IC + Dij + eij)) 

ElseIf dij < IC + Dij - eij  Then  

Bij = ln(dij / (IC + Dij - eij)) 

Else  

Bij = 0 

EndIf 

 

Fractional:   If dij > IC + Dij + eij  Then  

Bij = (dij - IC - Dij - eij) / (IC + Dij + eij) 

ElseIf dij < IC + Dij - eij  Then  

Bij = (dij - IC - Dij + eij) / (IC + Dij - eij) 

Else  

Bij = 0 

EndIf 

 

Ordinal MDS 

 

Stress & Stress1:  If Ldij < Hdij Then 

If dij < Ldij  Then  

Bij = dij - Ldij 

ElseIf dij > Hdij  Then  
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Bij = dij - Hdij 

Else  

Bij = 0 

EndIf 

Else 

If dij > Ldij  Then  

Bij = dij - Hdij 

ElseIf dij < Hdij  Then  

Bij = dij - Ldij 

Else  

Bij = 2dij - Ldij + Hdij 

EndIf 

EndIf 

 

 

SStress:   If Ldij < Hdij Then 

If dij < Ldij  Then  

Bij = dij
2
 - Ldij

2
 

ElseIf dij > Hdij  Then  

Bij = dij
2
 - Hdij

2
 

Else  

Bij = 0 

EndIf 

Else 

If dij > Ldij  Then  

Bij = dij
2
 - Hdij

2
 

ElseIf dij < Hdij  Then  

Bij = dij
2
 - Ldij

2
 

Else  

Bij = 2dij - Ldij
2
 + Hdij

2
 

EndIf 

EndIf 

 

 

Multiscale:   If Ldij < Hdij Then 

If dij < Ldij  Then  

Bij = ln(dij / Ldij) 

ElseIf dij > Hdij  Then  

Bij = ln(dij / Hdij) 

Else  

Bij = 0 

EndIf 

Else 

If dij > Ldij  Then  

Bij = ln(dij / Hdij) 
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ElseIf dij < Hdij  Then  

Bij = ln(dij / Ldij) 

Else  

Bij = ln(dij / Hdij) + ln(dij / Hdij) 

EndIf 

EndIf 

 

 

Fractional:   If Ldij < Hdij Then 

If dij < Ldij  Then  

Bij = (dij - Ldij) / Ldij 

ElseIf dij > Hdij  Then  

Bij = (dij - Hdij) / Hdij 

Else  

Bij = 0 

EndIf 

Else 

If dij > Ldij  Then  

Bij = (dij - Hdij) / Hdij 

ElseIf dij < Hdij  Then  

Bij = (dij - Ldij) / Ldij 

Else  

Bij = (dij -Ldij)/Ldij +(dij -Hdij)/Hdij 

EndIf 

EndIf 

 

 

The ratio and interval badness definitions are taken from the literature.  The ratio 

+ bounds and interval + bounds definitions flow from the ratio and interval formulas after 

being adjusted for a "zero penalty" zone centered about the target Dij.  Ordinal definitions 

are constructed similarly to the ratio + bounds definitions, except they no longer 

reference Dij.  For ordinal MDS all relationships are relative.  The Dij come into play only 

in determining the rank order of each i, j term.  The new variable Ldij stands for the 

distance between the two objects that have the next lowest dissimilarity beneath Dij.  

Similarly, Hdij stands for the distance between the two objects that have then next highest 

dissimilarity above Dij.  

 

The ratio MDS Multiscale and Fractional badness measures have singularities at 

Dij = 0, and the Multiscale measure has another singularity at dij = 0.  In practice, 0.0001 

is added to the vulnerable terms to avoid these singularities.  This is a common technique 

used in numerical analysis.  It maintains a monotonic relationship with the unmodified 

formulas, is computationally efficient, and causes insignificant (invisible under normal 

viewing conditions) distortions to the map.  Technically speaking, the introduction of the 

0.0001 terms means that the Multiscale and Fractional measures should be called Pseudo 
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Multiscale and Pseudo Fractional measures, but this refined terminology is essentially 

never used in the literature and is not used here. 

 

The choice of the badness measure is not always important.  There are numerous 

comments in the literature that this aspect can be ignored with the expectation that the 

map will be unchanged.  Because of this, some researchers simply assume that the Stress 

badness formula is the proper choice.  However, the conclusion that these details are not 

important is not always true.  A little work with Permap will show that it probably results 

from a false generalization based on data sets that are well fit.  The better the fit the more 

the choice of the badness measure is immaterial.  However, if the fit is not good, then the 

choice can be very important.  Once you have Permap up and running, check out the 

differences in configuration for the Stacked Triangles test case when SStress is used 

instead of a Stress.  It is important that the affect of this basic problem parameter be 

tested for each different data set.  You will find that the more stressed your solution is the 

more important the choice is. 

 

Finally, it should be mentioned that the Multiscale measure really is of very little 

value.  When used with ordinal MDS, it is of even less value.  It is included because, to 

the best of our knowledge, the typical MDS researcher likes to "try everything" and "see 

for themselves."  So it is included more for satisfying curiosity than for use.  Here is why 

Multiscale is not very useful.  First, it does not conform to most people's intuitive 

definition of badness.  That is, it is highly non-linear in its spatial relationship between 

badness and displacement.  Second, it leads to unstable mappings.  In fact, unless your 

data set has the possibility of a low-stress mapping (such as many of the special cases 

data sets do) using Multiscale may produce wildly unstable results.  Of course, you can 

first solve the problem using Stress or SStress and then rotate to Multiscale to see what 

the Multiscale mapping looks like, but direct convergence from random starting points is 

difficult to achieve.  Even using a smaller step size doesn't help in most cases.  So, if you 

are a "new user in a hurry," then just ignore Multiscale.  Otherwise, enjoy, but don't get 

upset if your data set doesn't have a stable solution.   

 

5.2.3 Distance Measures 

To determine the badness, Bij, you have to have the distance between two objects, 

dij.  To measure dij you must have a definition of how distances are measured.  For 

example, if you have two points (X1, Y1) and (X2, Y2) on a map, how far apart are they?  

If you believe in the Euclidean measure, then the distance is the length of a straight line 

between the points.  If you believe in the City Block measure, then the distance is the 

absolute value of X1-X2 plus the absolute value of Y1-Y2, which is equivalent to taking an 

"up and over" path.  If you believe in the Dominance measure where only the larger of 

the two differences is considered to be important, then the distance is the maximum of the 

absolute value of X1-X2 and absolute value of Y1-Y2.  These and other metrics can be 

represented using the general Minkowski formula where the exponent p has a value that 

can vary from one to infinity.  

 

Euclidean:  dij = SQRT{(Xi-Xj)
2
 + (Yi-Yj)

2
} 
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City Block:  dij = |Xi-Xj| + |Yi-Yj| 

 

Dominance:  dij = MAX(|Xi-Xj|, |Yi-Yj|) 

 

Minkowski:  dij = {|Xi-Xj|
p
 + |Yi-Yj|

p
}

1/p
 

 

Further generalization of the Minkowski form involves applying weights to the 

various Xi-Xj and Yi-Yj differences (Hartigan, 1975, p. 64).  However, these extensions 

are essentially never seen in the applied MDS literature.  In fact, the general Minkowski 

form and the Dominance form (equivalent to Minkowski p =  but often approximated by 

using p = 30) is almost never seen.  In practice, only the City Block (equivalent to 

Minkowski p = 1) or Euclidean (equivalent to Minkowski p = 2) distance metric is used 

to any significant extent.  Between City Block and Euclidean, the Euclidean is 

overwhelmingly the most commonly used metric.  Using the City Block metric is 

recommended only if you are knowledgeable about the perceptual assumptions that go 

with it.  See Torgerson's early work (Torgerson, 1952, 1958, 1965) for a detailed 

discussion of the relationship between spatial and psychological distances, and see 

Hubert, Arabie and Hesson-Mcinnis (1992) for a discussion of the mathematics of the 

City Block measure.  One could go so far as to say that you should always use the 

Euclidean metric unless you are thoroughly grounded in the fundamentals of measuring 

differences between abstract constructs.  Borg and Groenen (1997, p. 14) emphasized this 

position when they wrote “. . .  MDS representations that employ distance functions other 

than the Euclidean tend to be misleading when inspected intuitively.  Therefore, they are 

useless for exploratory purposes."  Despite the possibility of misuse, Permap includes the 

City Block and the general Minkowski distance measures to let users explore for 

themselves the various distance measurement alternatives.  

 

A final detail about the Minkowski distance measure needs explanation.  The 

Minkowski formula needs double precision arithmetic in order for the calculated 

distances to have the number of significant figures needed for Permap to be able to 

calculate the value of the objective function to many significant figures.  Double 

precision arithmetic is slower than single precision arithmetic and is not used in Permap.  

Thus, if you use a Minkowski distance formula you may find that for some p values the 

objective function is not as stable as it would be if a different distance function was used.  

 

5.2.4 Normalization Constants 

Normalization of a quantity is achieved by dividing it by a constant, NC that is 

chosen to achieve three purposes.  First, you want the units of measurement to cancel out.  

That is, you would like to get the same results regardless of whether the original data 

were expressed in centimeters or inches.  Second, you want large problems to produce the 

same intensive results as small problems.  This means the NC must serve as a scale 

factor.  Third, you want values to fall in the zero-one range so that the results based on 

them will be easily interpreted and do not require scale-related weights.  This last goal is 

the overarching goal of normalization, but it cannot always be achieved such as when the 
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quantity being normalized is not bounded.  Fortunately, this is not a problem for MDS 

objective functions. 

 

Normalization of the objective function does not influence the resulting MDS 

map at all.  It only changes the numerical value of the objective function value.  Still, to 

facilitate comparisons across studies it is best to normalize the objective function.  

Therefore, Permap always displays normalized objective function values. 

 

Permap uses the following NC factors: 

 

Stress:    NC = Sum (all i, j < i) Wij Dij
2
 

 

Stress1:  NC = Sum (all i, j < i) Wij dij
2
 

 

SStress:   NC = Sum (all i, j < i) Wij Dij
4
 

 

Multiscale:   NC = Sum (all i, j < i) Wij 

 

Fractional:   NC = Sum (all i, j < i) Wij 

 

By convention, if Wij is not used then they are set equal to one.  In this case the 

sum over the lower left corner of the weights matrix reduces to N (N - 1) / 2 where N is 

the number of objects in the analysis.   

 

Finally, if you carefully examine the preceding formulas you notice that there is 

an inconsistency in the Stress1 NC definition.  The normalizing constant for Stress1 is 

not a constant at all.  So, in this case, the term "normalizing constant" should be replaced 

with "normalizing factor."  The imprecision is tolerated to gain the pedagogical value of 

the taxonomy and to avoid arguments with Stress1 advocates. 

  

5.3 Mapping Weights 

Before discussing mapping weights, it is helpful to briefly digress into weight factors in 

general.  Some MDS analyses involve assigned weights Wij that multiply the corresponding Bij
2
 

terms.  Permap allows you to enter these weights through the data file.  They reflect the 

importance, uncertainty, saliency, flexibility, etc., associated with each object-to-object 

dissimilarity value.  Sometimes they are taken to be the reciprocals of the variances in the 

experimental data and sometimes they are just subjective assignments.  Most commonly they are 

not used.  If Permap finds no weight information in the data file, then all Wij are set equal to one. 

 

Note that if the dissimilarities are well fit by the map (the minimum objective function 

value is zero) then the weights are immaterial.  The map will remain stationary for any random 

assignment of weights because the weights are multiplying zero badness quantities.  However, if 

the fit is not perfect, then the weights tell how to respond to each pair's badness.  You might say 

they provide a method for determining "what yields the most."  For example, if you are unsure of 
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one object pair's dissimilarity, and it conflicts with those of one or more other pairs that you 

know with some certainty, then you should give the more uncertain Bij term a lower weight. 

 

Now let's shift our thinking away from traditional weights to a new kind of weight factor 

called a mapping weight.  Mapping weights are denoted MWij.  They are built into Permap and 

controlled by the Analysis Parameters/Mapping Weights menu or the Mapping Weights shortcut 

button.  These mapping weights do not replace the regular weights Wij.  They multiply the Wij 

weights.  It is the product Wij MWij that is used in the calculations.  Thus, if you decide to use 

mapping weights, then everywhere Wij appears in this manual you should replace Wij with Wij 

MWij.  To emphasize this point, we make it a separate subsection. 

 

5.3.1 Replacing Wij with Wij MWij  

If you choose to use mapping weights, then all formulas involving Wij should 

replace Wij with Wij MWij.   

 

5.3 Mapping Weights, continued 

The importance and general applicability of mapping weights is not widely recognized.  

There are three distinct reasons why mapping weights might be appropriate.   

 

1. Ignoring questions of scale and orientation the statement that zero dissimilarity exists 

is meaningful whereas the statement that complete dissimilarity exists may or may not even be 

capable of precise definition. 

 

2. Percent uncertainty values, rather than absolute uncertainty values, often better 

conform to measurement reality. 

 

3. A simple Cartesian map will not always convey the essence of the underlying 

relationships. 

 

The first of these points is fundamental.  It involves the issue of knowability.  Let (i, j) be 

(3, 4) to simplify the discussion.  The information content of saying D34 = 0 is quite different 

from saying D34 = 1.  Even in the simple case where two objects can be described by specifying 

the value of its attributes the problem remains.  Saying that D34 = 0 means that all corresponding 

attribute values of object 3 and object 4 are identical.  However, the same type of statement is not 

valid for the complete dissimilarity case.  If you know the nature of object 3 and object 4 then 

saying that D34 = 1 does not mean that you know the nature of object 4.  To put it still another 

way, test subjects might be able to explain why they consider two objects to be identical, but 

they cannot explain in similar detail why they consider two other objects to be completely 

different.  This means that position misfits between objects with a small dissimilarity should not 

be treated like position misfits for objects with large dissimilarities.  Strongly dissimilar values 

should be given less weight in determining the shape of the map.  In other words, mapping 

weights should decrease with increasing dissimilarity values.  The importance of this point is 

emphasized when one realizes that most objective functions do just the opposite.  They give 

more weight to large Dij values than small Dij values because the function involves the squaring 

of Dij. 
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The second point is practical.  It is often true that the degree of uncertainty in a 

measurement is roughly proportional to the magnitude of the property being measured.  This is 

not a necessary relationship, but one that is frequently observed.  If it applies, then instead of 

spending considerable time estimating Wij for each dissimilarity, it is easier to leave all Wij with 

the default setting Wij = 1, and let Permap generate appropriate mapping weights that decrease 

with increasing dissimilarity values. 

 

The third point is fundamentally different from the first two.  It does not involve using 

any concept of uncertainty.  Instead, it involves recognition that a "photograph like" picture of 

reality is not always the best picture to explain the essence of the matter.  This is why Picasso 

would take the elements of a traditional picture and move them about, change their orientation, 

change their color, or distort them in some manner.  In doing so he would facilitate a new 

understanding of the subject.  Mapping weights can do this.  Consider a set of eight objects that 

are arranged in three-dimensional space as if they were at the corners of a long box-kite 

(Permap's Special Case 7).  Now use the Stress badness measure, the Euclidean distance 

measure, two dimensions, and make a ratio MDS map of the eight objects.  The resulting map 

shows the outline of a long rectangle made up of four symbols in an almost straight line, parallel 

to and remote from another four symbols in an almost straight line.  This is a valid two-

dimensional picture of the three-dimensional box-kite.  It faithfully shows the two remote 

subgroups and some of the symmetry involved.  However, it badly distorts the relationships 

existing within the two subgroups.  If mapping weights are applied (click the MAPPING WTs. 

shortcut button twice), the MDS map immediately shifts to two squares remote from each other.  

Which picture is correct?  Both are, just as Picasso's art is as valid as Rembrandt's. 

 

Another example of how the use of mapping weights can clarify hidden structure in a 

data set is given in EXAMPLE_C.txt.  Here, Churchill defines ten department store 

characteristics to be the objects of interest.  He determines the correlations between objects based 

on a set of shoppers' impressions of different department stores.  After loading Permap use Stress 

badness measure, the Euclidean distance measure, two dimensions, and make a ratio MDS map 

of the data in EXAMPLE_C.txt.  You will find, as Churchill did, that there are two groups of 

characteristics.  One group has six members and the other four members.  Next, use the 

MAPPING WTs. shortcut button to rotate to using linear mapping weights.  The group of six is 

only slightly changed, while the group of four takes on a significantly altered internal 

arrangement.  Which picture is correct?  As before, both are correct.  It is up to the researcher to 

determine if the new configuration contributes to understanding the topic. 

 

Permap calculates mapping weights internally based on the values of the given Dij.  File 

entry of MWij values is not supported.  The built-in mapping weight function is: 

 

MWij = (1 - Dij) / (1 - m Dij) 

 

where "m" is an adjustable parameter with a value less than or equal to one.  
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Experience shows that most interesting behavior can be investigated using m = 1 (no 

mapping weights, equivalent to MWij = 1), m = 0.95 (weak mapping weights), m = 0 (medium 

mapping weights, equivalent to a linear decrease of MWij with increases in Dij), and m = -20 

(strong mapping weights).  Permap allows selection of these four standard mapping weight 

functions by using the MAPPING WTs. shortcut button.  Or, any arbitrary value of m can be 

selected using the Analysis Parameters/Mapping Weights menu.  This menu also shows a graph 

of MWij vs. Dij and displays a table of the corresponding MWij values. 

 

Note that the above mapping weights function goes to zero at Dij = 1 for all m not equal 

to 1.  This would allow independent object groups to "float away" from each other in a numerical 

analysis sense.  To avoid this a "floor" is introduced.  The MWij floor is 0.1 for weak, 0.01 for 

medium, and 0.001 for strong mapping weights.  The variable case (see the Mapping Weights 

screen) uses a floor equal to MWij calculated using the above equation with Dij = 0.98. 

 

Finding alternate views of reality, as was demonstrated by the box kite example or the 

department store comparison data of Churchill in EXAMPLE_C.txt, is one use of mapping 

weights.  Another is to check for conflicts that might exist between large and small dissimilarity 

values.  To demonstrate this point, load data file EXAMPLE_A.txt which contains the Ekman 

(1954) color comparison data.  Find the two dimensional map using ratio MDS, the Euclidean 

distance metric, and the Stress badness function.  You will get the standard circular figure that is 

shown in many text books.  Then, click the MAPPING WTs. shortcut button (use the View menu 

to turn on this feature if it does not already appear on the main screen) twice to reach the  

medium mapping weights” selection.  This will reduce the influence (weight) of the large 

dissimilarity values vis-a-vis the small ones.  The map will shift significantly, thus showing that 

there is a systematic conflict between the positions of the objects with large dissimilarities versus 

the positions of the objects with small dissimilarities.  Further analysis will show that the large 

dissimilarities favor the ring shape and the small dissimilarities act to disrupt the symmetry of 

the ring.  If this was your research, you would next decide which picture is most appropriate for 

the goals of your research.  Or, perhaps you would decide that further experimentation is called 

for in order to refine your estimates of the dissimilarities. 

 

While considering the Ekman results, it is worthwhile to note the danger of reading too 

much into circular patterns.  The Ekman circle may be as significant as several articles claim, but 

it could be that it resulted simply because it is easier to quantify differences between similar 

colors than it is to quantify differences between dissimilar colors.  If such were the case then 

colored objects would have their near-neighbor relationships well represented while the remote 

relationships would not be well represented.  This form of non-linearity can result in meandering 

chain-like patterns being turned into circular MDS patterns.  For example, consider this 

exaggerated case.  A closed chain of objects has all of its nearest-neighbor dissimilarities coded 

as zero and all of its non-nearest-neighbor dissimilarities coded as one.  Then, as is shown by 

analyzing the three different data sets in EXAMPLE_D.txt, a two-dimensional perfect circle is 

found.  The circle is a valid MDS solution, but it suggests much that is not necessarily true.  As 

the number of objects increases from three to, say, six or seven objects, the danger is even 

greater.  In these cases, a simplex matrix (i.e., a matrix with all non-diagonal dissimilarity values 

equal) always yields a circular symmetry.  This means that if your respondents are saying that 
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the less similar objects are "all about equally different" you will discover a circular relationship 

in your MDS map.  Thus, one must be careful not to draw quick conclusions after finding objects 

in a circular pattern. 

 

5.4 Dimensionality and Boundaries 

MDS analyses are not fully described until two more aspects are covered.  You must 

specify how many dimensions are to be used to describe the object placements, and what 

boundary conditions (external constraints) are to be placed on the solution.  These aspects can be 

specified using the Analysis Parameters/Dimensionality and Boundaries submenu (ctrl-Y).  

 

5.4.1 Dimensionality 

Pressing the Dimensions shortcut button or using ctrl-Y to open the 

Dimensionality and Boundaries screen allows you to control the dimensionality of your 

MDS solution.  Permap can analyze a problem using one to eight dimensions.  That is, 

the solution can be described in terms of each object's coordinates in any of eight solution 

spaces.  Permap can write out the object's coordinates to the PermapSolutionLongFmt.txt 

file if you want to see the actual values.  But, the important question is, since Permap can 

display only one or two dimensional maps, why would you want it to make a three or 

four dimensional analysis?  The answer to this question may not be what you expect.   

 

Let's take the easier of the two cases first.  Why would you want to make a four 

dimensional analysis?  Given that four dimensional configurations cannot be visualized, 

what good are they?  MDS is inherently a visual tool.  Providing a way to transform a set 

of numbers into a picture is its reason for being.  But in this case the visual nature of the 

solution is not of interest.  The answer is, we make the four dimensional solution not to 

understand the data's hidden structure in four dimensions but to check on the validity of a 

three dimensional solution.  There are many ways to test the merit of a particular 

solution.  One can use the objective function value, a Shepard plot, a Pareto plot of 

objective function components, Waern link plots, attribute gradient plots, and so forth.  

Each of these is useful and should be part of a complete analysis.  But the most direct 

way to see if a three dimensional map is stable, and thus "good", is to remove the 

restriction to three dimensions and see if any of the objects move.  This is called 

"relaxing the solution into a higher dimension."  If a four dimensional solution gives the 

same picture as a three dimensional solution, then you have strong evidence that three 

dimensions are adequate for describing your data set.  

 

Answering the similar question of why you would want to make a three 

dimensional analysis follows the same logic as that for four dimensions.  The only 

difference is that, as opposed to four dimensional results, three dimensional results can be 

visualized.  So why does the above logic still apply?  It applies because we need to 

communicate our results to others and many times these other people, especially those 

with the financial, organizational, or political clout to do something with the information, 

cannot understand the meaning of a collection of points in three dimensional space.  So, 

in many cases, the value of making a three dimensional analysis lies more in its ability to 
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help evaluate the quality of a two dimensional map rather than in the utility of the three 

dimensional solution itself. 

  

In light of the preceding two paragraphs, why would one ever want to solve 

problems in more than four dimensions?  An adequate reason is that it is fun to "look 

around" in higher dimensions.  However, a more common reason is to make a skree 

analysis that is described in many MDS texts.  A skree analysis involves solving a 

problem using many different dimensions, then plotting each solution's Stress versus the 

dimensionality of the solution space, and then taking the problem's optimal number of 

dimensions, D
*
, to be the number of dimensions used at the plot's "elbow."  The plot is 

supposed to look like the skree (loose rock) and valley floor at the base of a mountain.  It 

is supposed to distinctly show D
* 
where the two straight lines ("the skree line and the 

valley floor line") meet.  The trouble with this very reasonable approach is that it doesn't 

work.  It can be made to appear to work by illustrating the analysis using a hypothetical 

data set that is well fit using D
* 
dimensions.  The tip-off that artificial data are being used 

is noticing that Stress is very small when using D
*
 dimensions.  Unfortunately, real data 

sets don't behave this way.  From experience one can say that the Stress-Dimensions 

curve will have a gradual bend, not a sharp elbow,  and the analyst can pick D
*
 to be 

pretty much whatever number of dimensions he or she prefers.  Admittedly, that is a bit 

too harsh of a description of what happens with real skree analyses.  To compromise, the 

authors will happily soften their conclusion once they are sent a real, unmanipulated and 

unprocessed data set that shows a clear break in the optimal solution's Stress vs. 

dimensionality plot, AND the Stress using D
*
 dimensions is not nearly zero. 

 

Finding a good X-Y plot for a three or more dimensional solution is not always 

easy.  It is important to understand the difference between starting an analysis in, say, 

three dimensions versus starting it in two and then relaxing to three.  Because Permap 

displays a two dimensional map, when three or more dimensions are being used it is the 

projection on the X-Y plane that is displayed.  (Caution, this does not mean that a two 

dimensional solution is simply a projection from a higher dimension.  This is a point of 

confusion for some new users.)  Whenever you start a new solution Permap assigns 

random positions to the coordinate values of each object and then makes the analysis.  

So, each different "run" produces a different "view."  That is, the X-Y projection shown 

is different even though the relative object positions are the same.  These changing views 

can be confusing at first, but they are very valuable because they give a much richer 

understanding of the three dimensional shape of the object cluster.   

 

If you prefer to always have the X-Y plane hold the maximum amount of 

variation, and usually you will, then you can do two things.  One, start the analysis in two 

dimensions and subsequently relax it into three dimensions.  Two, instruct Permap to try 

to adjust the view for you.  When making three or more dimensional analyses, Permap's 

algorithm can be instructed to favor X-Y maps that have large cross-sections.  Permap is 

not always successful in this endeavor.  Exercising this option is done by checking the 

box "Attempt to keep the maximum ..." at the bottom right of the Dimensionality 

explanation area.  Beginners are advised to check the box. 
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To better understand shifting views of a solution, load Special Case 3 which has a 

dissimilarity matrix based on three connected perpendicular vectors in three dimensional 

space.  That is, the data represent the normal Euclidean axes near the origin.  Use a ratio 

analysis, Euclidean distance measurement, and check the "Attempt to keep the maximum 

..." dimensionality option.  Solve the problem in three dimensions.  The map will most 

probably show what you expect.  That is, a figure with three-part circular symmetry.  

Now hit Start numerous times.  The figure will not change significantly, except for 

irrelevant rotations and perhaps a few random local minima solutions.  Permap does a 

good job of keeping the maximum cross-section in the X-Y plane.  However, if you look 

very closely you may see some slight changes that are due to Permap's imperfect 

orientation mechanism.  Now uncheck the "Attempt to keep the maximum ..." option and 

hit Start several more times.  It will become immediately obvious that you are seeing the 

three vectors in 3D space from widely differing perspectives.  Sometimes you will be 

looking down on one of the three vectors and it will effectively disappear.  Sometimes 

one or two of the vectors will be greatly foreshortened.  Practice with this special case 

will develop your ability to understand the role of viewpoint in understanding three 

dimensional solutions. 

 

Turning now to MDS analyses in one dimension, it should be noted that these 

analyses are particularly difficult.  Local minima abound.  This is because the objects 

cannot "go around" each other when seeking their best positions.  If the objects cannot go 

around each other then they would have to "go over" or "go through" each other to reach 

their best positions, and that can make for difficult mathematics.  There are two ways to 

lessen this difficulty.  First, the SStress badness function is more effective than any of the 

other badness functions when it comes to letting objects get past blocks.  If you need to 

use one of the other badness functions, then first use SStress and after its solution is 

found change to your preferred badness function.  Second, make the analysis in two 

dimensions, then use the field commands to rotate the map's longest span to the 

horizontal, and then change back to one dimension and continue the solution.  Neither of 

these techniques will always work, but they are worth trying. 

 

5.4.2 Boundaries 

Pressing the Boundary shortcut button, or using ctrl-Y to open the Dimensionality 

and Boundaries screen, allows you to apply boundary conditions (external constraints) to 

your MDS solution.  It is surprising that few MDS programs provide for placing even 

simple boundary conditions on MDS maps despite the fact that the topic is well 

developed in the literature.  Lee and Bentler (1980) were one of the first that discussed 

the subject and Borg and Groenen (1997, p. 182) provide a summary of work on the 

topic.  Applying boundary conditions, or constraints as they are sometimes called, is very 

common in the work of physical scientists, but behavioral scientists have not placed 

much emphasis on it.  While it is true that many "conceptual space" MDS analyses do not 

have obvious boundary conditions, many others do and the possibility of their existence 

should be considered in every MDS analysis. 
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The idea of boundary conditions is a simple one.  For example, if you know all of 

the person-to-person affinities of a group of people you can solve for their preferred 

positions relative to one another.  However, the solution implicitly assumes that there is 

space available for the preferred positions and this may not be the case.  Perhaps the 

people are in a small room or maybe they must congregate in a room containing tables 

that get in the way.  Numerous similar examples are easy to describe when the objects 

represent mobile physical entities.  A completely different kind of boundary condition 

example involves time.  If you want to superimpose a time axis on a map, you might 

want to constrain the map's surface to a "path" or ribbon-like configuration.  That is, you 

want to make a "what if" analysis where MDS gives the best possible configuration for a 

set of dissimilarities and a time-flow hypothesis.  You do not want to make a one 

dimensional analysis because, you believe, it is possible to have multiple threads running 

side-by-side so a path or multi-lane road is a more appropriate conceptual model.  Maybe 

you are studying certain hominid artifacts and you know that more than one hominid 

species developed during the time period of interest.  By constraining the map to a long, 

narrow area you can quickly see what happens when you ask for a map that is compatible 

with a time-flow hypothesis.  A final example involves boundary conditions based on 

theoretical arguments.  It could be that, say, only four different object groupings are 

theoretically possible.  In this case you would want to have the MDS solution fit on a 

map that allows objects in at most four distinctly different areas.  

 

Permap allows studying the effect of three kinds of boundaries.  First, it allows 

imposing a bounding circle on the group of objects.  In essence, the objects are embedded 

in a space where you can control the size of the space.  If a three dimensional analysis is 

used then the boundary circle becomes a boundary sphere, and if a four dimensional 

analysis is used then it becomes a hyper-sphere.  This is necessary because if the nature 

of the boundary did not change with the solution's dimensionality then objects in a higher 

dimensionality could just move "off the plane" and completely avoid the constraint.  

Second, Permap allows restricting the objects to a narrow path.  The path becomes a tube 

in three dimensions and a hyper-tube in four dimensions.  Third, Permap allows 

restricting the objects to a square area.  The square becomes a cube in three dimensions 

and a hyper-cube in four dimensions. 

 

When applying a boundary one might think that all solutions will simply consist 

of the objects being pushed up against the boundary.  This is not always the case.  Some 

experimentation with the special cases built into Permap will reveal interesting behavior.  

The implication for the MDS analyst is that when dealing with mobile objects it is 

important to consider the possibility that constraints are limiting the (X, Y) positions.  

This means that when constructing a MDS map sometimes it is important to be able to 

apply boundary conditions that make the results fit both the Dij data and the environment 

that surrounds the objects. 

 

This discussion of boundaries might prompt you to ask “Do the constraints 

imposed on certain (X, Y) values have to come from some physical surrounding barrier?”  

The answer is “no.”  For instance, legal rulings, family or societal mores, religious 
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beliefs, or a host of other “forces” may dictate that certain members of a group be, for 

instance, no closer than some given distance.  Note that in all of these cases one or more 

(Xi, Yi) positions are being influenced by an external force, not something that involves 

changing any Dij values.  Such restrictions can be viewed as forms of “boundary 

conditions,” albeit not physical boundaries.  This topic is touched on in the section on 

“fixed locations” although in that section the language of boundaries is not used.   

 

5.5 Dij Precision Degradation 

Before discussing data precision, please note that if you are using an attribute matrix to 

generate your dissimilarity matrix you should read Section 6.1 on attribute data level 

degradation.  This is because if you have attributes then they are the independent variables and 

you should do "cleaning," "segregating" and “data precision evaluation” work using the 

independent variables, not the dependent variables (dissimilarities in this particular case).  

 

The topic of precision degradation (a subtopic of the much broader “data discretization” 

topic) is important.  This is because it is important to know if your Dij data's overall precision is 

adequate to support your results.  In other words, every MDS analysis should include a 

sensitivity analysis. 

 

Before we get into the details of Dij precision degradation, we must answer the question, 

why are we addressing this subject again?  Aren't the error bounds of Section 5.1 sufficient to 

handle the matter?  The answer is that, yes, using those techniques can do the job from a certain 

perspective.  But, the feedback we have received from many Permap users clearly shows that 

these approaches are not being used as much as they should be.  Also, MDS research articles 

appear every month that contain no sensitivity analyses at all.  This is an important flaw.  

Because we believe making a sensitivity analysis is so important we have changed Permap to 

make it easier.  Starting with version 10.0, an on-line button has been added to Permap's main 

screen to allow one-click degradation of the Dij data.  This button is labeled PRECISION and can 

be activated with a mouse click or by pressing the "E" key.  (If the PRECISION button is not 

present on the main screen then use the View menu to activate it.)  With just a few clicks you can 

degrade the Dij data's precision all the way back to its (0, 1) roots.  If you do this while watching 

your map, you can immediately draw conclusions about the sensitivity of your map to the 

precision of your Dij data. 

 

In order to be clear about Dij degradation, we must first review some definitions.  

"Precision" refers to the degree of refinement with which a measurement is reported.  Precision 

can be characterized in several ways.  One is to observe the number of significant figures that are 

reported, another is to give an uncertainty measure, another is to use the implied rule of  5 in 

the next (missing) decimal place to the right, and so forth.  "Accuracy" refers to the degree of 

conformity between a measurement and a true value.  The true value may be known or unknown.  

That is immaterial.  The concept of accuracy defined in terms of a true value is still useful.  

Finally, the first digit of an actual measurement that differs from a true measurement marks the 

start of the "false figures."  Anytime the precision of a measurement exceeds its accuracy there 

are false figures involved.  We may not know which figures are false, but we can take steps to 

make sure that they do not invalidate our results.  This is particularly important because in 
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various of the “soft sciences” MDS is frequently applied to Dij data of low accuracy and high 

precision.  Clearly false figures are often, some would say essentially always, present.    
 

          How does one decide if a MDS map is influenced by false figures?  One degrades the Dij 

data until the false figures disappear.  In effect, the increasing error bounds envelope the false 

figures and they melt away into irrelevancy.  Eventually, the error bounds become so large that 

all critics agree that the true Dij values fall within the bounds.  If the map has remained 

unchanged during the degrading, then it must not be a result of the false figures.  

 

          But, if one does not know the true values for the Dij data then one must not know which 

figures are false, so how can one know when to stop degrading the data?  The answer is to 

degrade the precision "beyond reason," or to degrade it "with your critics at your side."  

Fortunately, MDS is a very robust procedure.  That is, it produces results that are not sensitive to 

small errors in its input data.  Because of this, you will probably find that your MDS map is little 

changed even after severe, "beyond reason," degradation of its Dij data. 

 

Here is how Permap degrades the Dij data.  Beneath the caption "PRECISION" on the 

precision control button there is an entry that shows the current precision of the Dij data.  Starting 

with the maximum number of decimal places (or maximum number of digits if the input is not 

already normalized to the zero/one range) in the input Dij data, Permap rounds down to the next 

lesser number of decimals with each button click.  After reaching the tenths-level it starts 

rounding to the nearest 1/5, 1/4, 1/3, ½, and 1 intervals.  At a final interval of 1, all Dij values 

equal 0 or 1.  Another click on PRECISION will return the precision level back to the maximum 

precision consistent with the input data.  It has "Max" appended to the numerical value as a 

reminder that the input (maximum possible) value is in use.  

 

For example, if D28 = 0.34567, after one click on the PRECISION button D28 will be 

0.3457, then 0.346, then 0.35, and then 0.3.  Once it reaches the tenths level, Permap begins to 

degrade the precision using fractional step sizes rather than decimal step sizes.  That is, it 

reassigns the current value to the nearest number on a scale using step sizes of 1/5, 1/4, 1/3, ½, 

and then 1.  This means that, continuing with the example above, D28 will change from 0.3 to 

0.2, then 0.25, then 0.33, then 0.5, and then to 0.  In each case the step size between possible 

values increases.  For example, starting from input data showing five decimals, the measurement 

interval (step size) varies as follows:  0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.25, 0.33, 0.50, and 

1.0.  In each case the uncertainty, i.e.  half the measurement interval, increases in an analogous 

manner.  As an aside, one might ask why the 1/3 interval is taken to be 0.33 instead of, say, 

0.333.  The reason is that a general rule from the theory of error analysis is that the last 

significant figure in any stated answer should be of the same order of magnitude as the 

uncertainty (Taylor, 1997, p. 15).  

 

The reason for having Permap degrade the precision using fractional intervals after the 

decimal places are exhausted is that these step sizes, while extreme, correspond to experimental 

conditions of interest to some researchers.  For instance, if a person is asked to assign a 

dissimilarity to two objects by placing a mark on a line segment that goes from 0 to 1, the 

dissimilarity value may be reported to the nearest 0.1 value (depending on the length of the line 
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segment, the width of the marker point, and the diligence of the experimenter).  Our researcher 

might be quite happy with the 0.1 precision data.  But another researcher might claim that some 

theoretical principle says that no more than 6 detectable states are possible under the given 

conditions.  This second researcher would insist on recording the dissimilarity values as 0.0, 0.2, 

0.4, 0.6, 0.8, or 1.0.  So, the first researcher might like to know if his or her MDS map will 

remain stable if the dissimilarity precision is degraded from the 0.1 interval level to the 1/5 level 

(five intervals, six possible values, 0.2 interval size).  Permap’s Precision Button can help answer 

the question. 

 

Finally, a note of caution is in order for certain degraded precision levels.  Sometimes 

you will notice a significant change in a map at a precision level of ½.  The ½ level can cause 

changes in the map that are even bigger than those occurring when using a measurement interval 

of 1.  This occurs when the Dij data are clustered in the center of the 0 to 1 interval.  Under these 

circumstances the 0.5  0.25 range captures most of the dissimilarities and the Dij matrix moves 

toward a Dij = 0.5 simplex.  This behavior is simply an artifact of a poorly conditioned Dij 

matrix. 

 

 

6.0 ATTRIBUTES-TO-DISSIMILARITIES 
 

If no attribute information (an Aik matrix) is provided in the data file, then this menu item 

is disabled (grayed out).  If attribute information is provided, Permap uses the attributes to 

produce dissimilarities and then uses the dissimilarities to produce a map.  In this case each 

object can have up to 100 attributes.  

 

6.1 Attribute Data Types 

The first item on the left side of the screen is the Attribute Input Data Level box.  

Use it to specify the type (i.e., quality or information level) of your attribute data.  

Acceptable data types are ratio (metric), interval (metric), ordinal (nonmetric), nominal 

(nonmetric), binary nominal (nonmetric), and "unknown" (both metric and nonmetric).  

The ordinal level is also known as rank order, and the binary nominal level is also called 

dichotomous. 

 

Ideally, all of your various different attributes should be of the same data type.  

For instance, if some attribute values come from Likert data, then all of your attributes 

should come from Likert data or some other ordinal data of comparable precision.  This is 

the ideal case.  In practice this rule is frequently violated.  For instance, if you are using 

the Pearson correlation coefficient it is flexible enough that you can feed it a mixture of 

ratio, interval, and binary nominal level attribute data.  Using binary data with the 

Pearson formula is not theoretically correct, but the formula works just fine and Permap 

happily complies with bad instructions of this kind.  Other association, correlation, 

distance, interaction, etc. coefficients are more specific and cannot be used except with 

one type of data.  Permap only goes part way toward solving the problem of mixed data 

types.  It facilitates using mixed types by coercing all the data types into the type that is 

compatible with the selected attribute-to-dissimilarity function.  These coercions are 
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described in Section 6.1.1.  This approach is acceptable sometimes and other times it is 

clearly unacceptable.  If this approach is not acceptable and if you have a mixture of data 

levels in your attributes, then it is up to you to apply an appropriate attribute-to-

dissimilarity function to each different type of attribute, and then combine those single-

case dissimilarity values into an overall dissimilarity value.  See Kaufman and 

Rousseeuw (1990, p. 32) for a summary of methods for combining diverse attribute 

information into one dissimilarity value. 

 

When you choose an attribute data type Permap excludes using any attribute-to-

dissimilarity functions that do not fit that data type.  For example, if you choose to use 

interval level data then the COS(alpha) = Angular Separation function is prohibited 

because the COS(alpha) function requires ratio level data.  This exclusion is implemented 

by disabling (graying out) all options in the Attribute-to-Dissimilarity Functions box that 

are not designed to work with the specified data level, and by causing the Attributes 

shortcut button on the main screen to cycle through only the allowed functions.  As 

another example, if you choose the ratio level option to describe your input data, then the 

ratio and interval level attribute-to-dissimilarity functions are activated, the other 

functions are grayed out, and the Attributes shortcut button is caused to cycle through 

only the appropriate interval and ratio level functions.  The same kind of behavior applies 

to the other data level selections.  

 

If you choose the "Unknown" data level option, then all attribute-to-dissimilarity 

functions are allowed.  Of course, you should always know the nature of your data.  

However, the Unknown option has some useful aspects.  First, because most MDS users 

are inveterate experimenters they like to see what happens when the rules are violated.  

This option is great for doing a little "looking around."  Second, as will be explained 

later, sometimes an expert MDS user will have a valid reason to downgrade the attribute 

data to be able to use a lower level attribute-to-dissimilarity function.  Or, perhaps this 

would be done to force one’s attribute data to be of one consistent level.  After describing 

how Permap coerces data into different data types we will discuss further why an 

experienced MDS researcher might want to use the Unknown option and downgrade the 

attribute information. 

 

6.1.1 Changing Data Types 

If you select an attribute-to-dissimilarity function that does not agree with 

the data type of one or more of your attributes, Permap converts (coerces) the 

mismatched Aik data into the required format.   

 

Up-Conversions 

Up-conversion is somewhat controversial, often interesting, sometimes 

provides hints about how to improve future data collection, and equally often 

yields nonsense.   

 

Up-conversions are those conversions that treat lower level data as if they 

were higher level data.  Sometimes this involves nothing more that ignoring 
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reality and sometimes it involves valid manipulations of the data.  For example, 

using interval level data in a ratio level function such as COS(alpha) involves an 

up-conversion of the first kind.  It usually produces nonsense.  On the other hand, 

adding a constant to interval level data in a manner that shifts it to ratio level data 

(think of converting temperatures on the interval Celsius scale to the ratio Kelvin 

scale by adding 273.15) involves an up-conversion of the second kind. 

 

Here is how Permap makes up-conversions.  When moving from binary 

nominal level Aik data to a higher level of data Permap just pretends that the 

binary nominal level data are ratio, interval, ordinal, or nominal and proceeds to 

use the formulas given in Section 6.2 to calculate the dissimilarities.  That is, 

either it treats the zeros and ones of the binary data as if they were the results of 

measurements that yielded zeros and ones (for ratio, interval, and ordinal 

formulas), or it treats them as the names "zero" and "one" (for nominal formulas).  

 

Up-conversion from nominal level Aik data to metric data involves the 

esoteric matter of ordered lists and unordered lists, and how ordered lists differ 

from ordinal information (answer, only in their bound set of functions).  Because 

Permap uses numbers as names for nominal data, Permap makes these up-

conversions automatically.  Equally automatically, the results are usually 

nonsense. 

 

Up-converting ordinal or interval level Aik data to ratio data is as easy as 

upgrading binary nominal data.  Permap just pretends that the numbers are more 

than what they really are.  If a formula is used that requires ratio level data but 

lower level data is entered, nonsense often results.  This is because ratio data must 

have a meaningful zero and the lower levels of data may do not even 

approximately satisfy this requirement. 

 

In summary, up-conversions are occasionally useful to experienced MDS 

users and probably should be avoided by beginners.  

 

Down-Conversions 

Down-converting attribute data is analogous to precision degradation of 

dissimilarity data.  They are much more interesting, and more useful, than up-

conversions.  They produce rigorously correct results, even though the results do 

not exploit the full potential of the information contained in the data.  Basically, 

down-conversions involve ignoring some information content of the data.  The 

technique possibly provides a way of strengthening your conclusions.  We will 

discuss this more in the following section after the nuts and bolts of Permap's 

conversions are described. 

 

Downgrading from ratio level Aik data to interval level data requires no 

action on Permap's part.  You just start using the interval attribute-to-dissimilarity 
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formulas.  All the interval level formulas work off differences in attribute values 

and thus the attribute's zero point is irrelevant.   

 

Downgrading from ratio or interval level Aik data to ordinal level is done 

by first sorting the data into an array with the smallest values first.  Ties are 

broken arbitrarily.  Then, the first data group is defined to contain the entry with 

smallest value, or the first several entries where each value is less than or equal to 

0.0001 more than the lowest value found in the group.  Next, the previously 

grouped values are ignored and the grouping process is repeated.  This continues 

until all entries are assigned a group.  Finally, each attribute value is exchanged 

for the group's identification index (rank). 

 

In coercing ratio, interval, or ordinal level Aik data to nominal data the 

original data are rounded to the nearest integer, and the integers are treated as if 

they are names.  The new "nominal" data will exhibit a greater coarseness than the 

original data.  The degree of degradation is dependent on the range of the original 

data (you can increase the range by multiplying the data by a constant).  If the 

original data are all integers, for example, there is no information loss.  However, 

the map still will change because different types of attribute-to-dissimilarity 

formulas are now used. 

 

Finally, ratio, interval, ordinal, or nominal level Aik (remember that the 

nominal names are represented internally by numbers) data can be coerced into 

binary nominal data.  There are two common ways to make the change and the 

choice is made using the Conversion to Binary option box at the bottom of the 

left-hand panel of the Dissimilarities-from-Attributes selection screen.  The first 

option is to treat any zero value as binary zero, and any non-zero value as a binary 

one.  The second is to treat any value less than or equal to the average value as 

binary zero, and all others as binary one.  The average value is the average over 

all possible objects of the attribute in question.  That is, it does not change if some 

objects are removed from the active data set by parking them. 

 

6.1.2 Examples of Down-Conversions 

Here are several examples of down-conversion to illustrate the rules given 

above.  If your original attribute values are 0, .3, .6, 1.2, 55, and 11, they will 

become 0, 1, 2, 3, 5, and 4 when converted to ordinal level, and become 0, 0, 1, 1, 

55, and 11 when converted to nominal level.  If converted to binary nominal level, 

they will become 0, 1, 1, 1, 1, and 1 if the first metric-to-binary option is used, 

and 0, 0, 0, 0, 1 and 0 if the second option is used. 

 

If your original attribute values are 0, .3, .6, .2, .1, and .5, they will 

become 0, 3, 5, 2, 1, and 4 when converted to ordinal level, and 0, 0, 1, 0, 0, and 1 

when converted to nominal level.  If converted to binary nominal level, they will 

become 0, 1, 1, 1, 1, and 1 if the first metric-to-binary option is used, and 0, 1, 1, 
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0, 0 and 1 if the second option is used.  Clearly, the range of the metric data can 

play an important role in the conversion process. 

 

6.1.3 Rational for Using Down-Conversions 

Down-conversion is a valid procedure that should be understood by all 

MDS analysts.  MDS is a very robust technique and sometimes down-conversion 

does not significantly change the final map.  In these cases, your conclusions are 

strengthened because they are seen to be subject to less restrictive assumptions 

about data quality than they originally were. 

 

For instance, say your attribute data consists of the averages of the 

responses of a group of tribal elders' judgments about the importance or 

occurrence frequency of a list of factors associated with numerous tribal 

ceremonies (objects).  You have recorded all sorts of factors (attributes) and had 

the tribal elders use a Likert-like scheme where the bottom category of each 

factor's range was of the form "zero importance," "little importance," and so forth.  

Furthermore, you have arranged the check boxes in a manner so that there is an 

equal change in factor value between boxes.  Based on your abundant confidence 

in your survey construction expertise, you tell Permap to assume that your data 

are ratio level and make the MDS map using COS(alpha) attribute-to-dissimilarity 

function (most likely a mistake but that is beside the point here).  However, your 

research advisor says you cannot do that because you don't know that a 

checkmark in the bottom box truly means that the value of the factor in question 

was zero.  For instance, maybe the tribal elders classified very unusual events as 

being of zero importance just because they were rare events.  You disagree with 

your advisor.  Instead of arguing the point (smart move) you reinterpret your 

attribute data as interval level data and redo the analysis (i.e., just click the 

Attributes shortcut button) using a less restrictive formula.  Your results likely 

will not change at all and as a result you are in a stronger position to support your 

conclusions.  Now, say your advisor further complains that you do not truly know 

that the intervals between the Likert levels represented by adjacent check boxes 

are equal.  Again, you should reinterpret your attribute data as being ordinal level 

and redo the analysis (i.e., just click the Attributes shortcut button).  Your MDS 

map may or may not remain stationary. 

 

This line of reasoning can be extended to include the radical case of 

degrading your supposedly ratio level attribute data all the way down to the 

binary nominal level.  For instance, a doctoral thesis examiner once was observed 

exclaiming that a candidate's data were so unreliable that they should not be 

called "measurements" at all.  He stated that they were only indicators of the 

existence or nonexistence of the event under study.  By now you should know 

what the candidate should have done before his thesis defense.  He should have 

reinterpreted his data as binary nominal level data and checked to see if it 

mattered to the resulting MDS map.  Depending on the nature of the data, and 
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critically on the number of data points, the resulting map may not change at all 

and the candidate could have avoided a most undesirable confrontation. 

 

Can any real data set undergo such severe down-conversion (precision 

degradation) and still yield the same MDS map?  Many cannot but some can.  

Sometimes a very great amount of attribute data degradation causes almost no 

change in the MDS map.  Whether or not the map is immune to precision 

degradation depends on the dimensionality of the data's hidden structure.  If there 

really is a low-dimensional structure in the data, then the dissimilarity data are 

highly redundant and the results will be insensitive to some measurements being 

eliminated or having their precision degraded.  This redundancy is expensive to 

the analyst in terms of the effort needed to produce the dissimilarity matrix, but it 

is beneficial when it comes to the analysis stage.    

 

It should be clear that no magic is involved in the robustness of MDS 

results.  Robustness should be expected whenever the MDS map shows a low 

stress configuration.  The dissimilarity table has N (N - 1) / 2 values describing 

object-to-object relationships.  However, if the data are well fit in two 

dimensions, then no more than 3N-6 (for N>2) object-to-object relationships are 

needed to construct an equivalent map (translations, rotations, and reflections are 

ignored).  So, for example, if there are 15 objects then of the 105 dissimilarity 

values only 39 are really needed.  Furthermore, if you know, say, that the objects 

are controlled by the value of two attributes, then even less information is 

required.  In this case no more than 2N-2 data points are needed to fully specify 

the map and only 28 of the 105 original points are needed.  Because of this great 

amount of redundancy it should be no surprise that data containing two-

dimensional hidden structures can suffer significant degradation, or contain a 

significant amount of random error, or have many missing values, without the 

map significantly changing.  That is one reason why MDS is so liked by so many 

data analysts. 

 

We have discussed only one of two ways that the effect of uncertainty in 

attribute data should be evaluated.  In addition to considering changes in attribute 

information level (i.e., ratio, interval, …) one should consider each attribute’s 

value imprecision and determine how this imprecision might affect the MDS map.  

This second approach might involve assigning error bounds to each attribute 

value and then using the rules of the theory of error analysis to flow these errors 

through to the resulting dissimilarities and then to the object positions on the map.  

This is almost never done.  Actually, it is probable that it has never been done.  To 

get useful results one would have to assign probability distributions (using ranges 

yields unreasonably pessimistic results) for the uncertainties present in each 

attribute value.  Obviously, this approach is very difficult for problems of any 

significant size and we know of no MDS program that supports this kind of 

sensitivity analysis. 
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6.2 Attribute Functions 

The Attribute-to-Dissimilarity Functions box lets you pick a particular attribute-

to-dissimilarity function that is consistent with your data type.  The only advantage to 

making a selection using this screen rather than using the main screen's Attributes 

shortcut button to cycle to your preferred choice is that the text box on the right side 

gives the mathematical formulas that are used.  This assumes that you recognize i and j as 

object subscripts, k as an attribute subscript, that |x| represents the absolute value of x, 

that Rngk = Range of Ak = MAX(Ak) - MIN(Ak), that r = the product moment correlation 

coefficient, and that N is the number of valid cases (which is NOBJECTS from your data 

file unless you have missing data or parked objects). 

 

1. Ratio Level Attribute Data Required 

Function   Formula    

COS(alpha)   Dij = 1 - Cosine(alpha) 

 

Alpha is the angle between attribute vectors i and j.  This is sometimes called the 

Angular Separation coefficient. 

 

2. Interval Level or Better Attribute Data Required 

Function   Formula    

Euclidean (unnorm.)   Dij = SQRT {SUM(all k) {(Aik-Ajk)
2
 }/ N} 

Euclidean (normalized) Dij = SQRT {SUM(all k) {(Aik-Ajk)
2
 / 

RANGE(Ak)
2
}/ N} 

City Block (unnorm.)  Dij = SUM(all k) { |Aik-Ajk| } / N 

City Block (normalized) Dij = SUM(all k) { |Aik-Ajk| / RANGE(Ak)}/ N 

Guttman   Dij = (1 - mu2) / 2 

Pearson Type 1  Dij = (1 - r) / 2 

 

The Pearson r is the usual product moment correlation coefficient.  The Guttman 

mu2 monotonicity coefficient is less well known; it is sometimes used with 

ordinal analyses.  Occasionally it is appropriate to use a Person Type 2 

transformation using Dij = 1 - |r|.  This must be determined by the nature of your 

data. 

 

3. Ordinal Level or Better Attribute Data Required 

Function   Formula    

Spearman    Dij = (1 - r) / 2 

 

The Spearman r is the same as the Pearson product moment correlation 

coefficient, except it is applied to the ordinal indices (ranks) instead of directly to 

the attribute data.   

 

4. Nominal Level or Better Attribute Data Required 

Function   Formula 

Nominal SMC   Dij = 1 - A / N 
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The count A is found by counting the times the attribute names (i.e., the assigned 

numbers given to Permap) of objects i and j are both are the same.  N is the total 

number of valid cases.  It equals the number of different attributes used to define 

an object unless there are missing attributes.  

 

5. Binary Level or Better Attribute Data Required 

Function   Formula 

Jaccard   Dij = 1 - A / (A + B + C) 

Gower/Russell/Rao  Dij = 1 - A / N 

SMC/Sokal/Michene  Dij = 1 - (A + D) / N 

Hamman   Dij = 0.5 + 0.5 (A - B - C + D) / N 

Yule    Dij = 1 - (AD - BC) / (AD + BC 

Askin/Charles   Dij = 1 - MAX{A / (A + C), A / (A + B)} 

 

The counts A, B, C, and D are found by summing the occurrences of the four 

possible cases.  That is, A is incremented each time the binary attributes of objects 

i and j are both are 1, B is incremented each time the first attribute is 1 and the 

second attribute is 0, C is incremented each time both are 0, and D is incremented 

each time the first is 0 and the second is 1.  This is usually illustrated using a 2-

by-2 contingency (association) table where A and B are the first row entries, and 

C and D are the second row entries.  A + B + C + D = N, the total number of valid 

cases mentioned above. 

 

6.3 Using Attribute and Dissimilarity Data 

The last option in the Attribute-to-Dissimilarity Functions box is not often needed 

but is very useful in some special cases.  This option is disabled (grayed out), and it does 

not appear in the Attributes shortcut button's rotation list unless you have both 

dissimilarity and attribute data in your data file.  If you independently know dissimilarity 

and attribute values (most unusual, count your blessings), then it is important to know if 

they provide consistent results.  By selecting the Use Provided Dissimilarities you tell 

Permap to use the dissimilarity data rather than calculate them using the attribute-to-

dissimilarity formulas.  Then, by clicking the Attributes shortcut button, you can see if 

switching back to using the attributes makes any difference. 

 

6.4 Euclidean and City Block Attribute Normalization 

The interval level Euclidean attribute-to-dissimilarity formula is used frequently.  

However, it and the City Block formula, come in several varieties each differing by their 

normalizing factor.  Note that this is quite different from all the other formulas presented 

above.  All of the other formulas are defined as either normalized quantities or their 

normalization is inherent (e.g., the "counting" formulas). 

 

The key question in designing Permap was whether or not to offer the 

unnormalized (sometimes called "raw") forms of the Euclidean and City Block attribute-

to-dissimilarity formulas.  While the unnormalized forms can lead to mischief in the 
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hands of a novice, they are important to the expert.  For instance, if Permap were to insist 

on using only normalized forms, then experts would be prohibited from complete control 

over their analysis.  They might want to, say, enter a set of data where each object has 

two attributes that are based on the same units of measurement but one has a range of 0.5 

and the other 1.0.  There may be good reasons why some experts want the differing 

ranges, and they do not want their data normalized by Permap.  The experts are correct in 

insisting that they be able to control the treatment of their data.  Thus, despite the 

possibly of misuse, Permap includes the unnormalized Euclidean and City Block forms. 

 

It is also important to recognize that the literature contains several different 

techniques for normalizing the Euclidean and City Block formulas.  The three most 

common methods are (1) dividing by the range, (2) dividing by the average absolute 

deviation, and (3) dividing by the standard deviation.  All three approaches are valid and 

all three save those new to MDS from using input that results in Dij values greater than 

one, which in turn forces the rescaling of all Dij values back to a maximum of one and 

may result in a serious imbalance between the relative influences of the various attributes.  

In order to keep the Permap interface simple, and because the three normalizing 

techniques produce similar results, only the range-normalized equations are used. 

 

Control over which form, normalized or unnormalized, Permap uses is achieved 

by using the option box in the middle of the left side panel on the Attributes-to-

Dissimilarities selection screen.  If the Unnormalized Form option is selected, then no 

changes are made to your attribute data and the unnormalized equation will be used.  In 

this case it is solely up to you to provide properly scaled attribute data.  On the other 

hand, if the Normalized Form option is selected, then the Euclidean and City Block 

formulas are normalized by range and you can enter attribute data based on any desired 

scale.   

 

 

7.0 MAP EVALUATION 
 

Harshman (1984) wrote an important paper addressing how to check the appropriateness 

of MDS results.  He discussed the importance of not making an analysis until questions about the 

theoretical appropriateness of the MDS model have been considered.  That is, is there reason to 

believe that the relationships between objects should be properly represented by distances?  If 

not, then MDS may not be the appropriate tool for the analysis.  Torgerson (1958, 1965) also 

addressed this point.  These papers should be the starting point for those new to MDS analysis.   

 

Once you have a map, you must address the question Kruskal (Schiffman, Reynolds, & 

Young, 1981) asked, "How well do we know what we know?  How do we spot warning signals -

- and bring them effectively to the attention of first-time users?"  While the situation has 

improved since 1981, it is still true that MDS maps often are misinterpreted and artifacts are 

mistaken for relationships.  It is important to qualify a map before undertaking the painstaking 

effort of defining and interpreting groups and assigning dimensions.  
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Several map evaluation tests are given in Sections 7.1, 7.2, and 7.3.  All of these tests 

have to do with the validity of the two-dimensional representation of multi dimensional data.  

They do not address the interpretation of the map. 

 

7.1 Objects Evaluation Screen 

If some object has a high relative contribution to the value of the objective function or to 

its overall out-of-plane tendency (to be defined in the following paragraphs) then there is reason 

to believe that its placement on the map does not result from a two-dimensional association with 

its neighbors.  This can be tested by examining a Pareto Plot of the objective function 

components, or by two other ways that involve superimposing information on the map.  Each 

option has context-sensitive information provided in a "Notes" text box at the bottom of the Map 

Evaluation/Objects Evaluation screen.  The Evaluation screen can be reached by using the menu 

system or by the ctrl-O shortcut.  

  

 Printing a map with the evaluation markings on it is facilitated by having these markings 

persist after the evaluation screen is closed.  See the Section 6.4.1 for the various printing 

techniques.  After closing the evaluation screen if the Start or Continue button is pressed, or an 

open space is clicked, all evaluation markings are removed and Permap operation is returned to 

its usual mode. 

 

  

7.1.1 Pareto Plot 

A Pareto plot is a bar chart showing some important quantity on the Y-axis and its 

associated name, index, type, etc. on the X-axis, where the events on the X-axis are 

presented in the order of decreasing Y values.  To MDS users the contribution to the 

objective function, or the out-of-plane tendency, is the quantity of interest.   

 

Pareto plots are used in several disciplines.  They serve to keep focus on the most 

important events and give an indication of the nature of the distribution of some 

important characteristic.  The Pareto Principle, sometimes called the 80/20 rule, is often 

stated as "80% of the results (profits, complaints, fines, etc.) come from 20% of the 

sources (products, customers, accidents, etc.)."  Sometimes it is stated in the inverse 

format, but regardless of statement format it emphasizes that event frequency is not 

uniformly distributed across causal roots. 

 

In passing, those new to MDS might benefit from a few comments on a related 

point.  The Pareto Principle forms part of the foundation of MDS.  Were it not true that 

many situations are controlled by the "significant few" rather than the "insignificant 

many" factors (another way of stating the Pareto Principle) it would make little sense to 

use MDS at all.  This is because nobody can meaningfully interpret or communicate the 

results of a structure in four or more dimensions, and without interpretation and 

communication there is little value in making the analysis.  So, one can say that MDS 

users have faith that their data has a significant hidden structure and that it can be 

substantially described using two (three, in rare cases) dimensions.  No theory says that 
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this must be so, but we proceed as if it is so.  Fortunately, a vast amount of experience 

suggests it is so in many cases. 

 

It is useful to identify outliers on the Pareto plot.  To do this, Permap adds 

average, 1% probability, and 5% probability lines.  The one-tail critical probability lines 

are set at the mean plus 2.33 standard deviations and at the mean plus 1.65 standard 

deviations.  These lines show, approximately, the values where the likelihood that an 

occurrence is due to random chance is less than one percent, and five percent, 

respectively.  It is important to note that the classification resulting from these lines is 

nothing more than a useful fiction because no evidence has been given that the 

underlying distribution is normal (i.e., a Gaussian or bell curve distribution).  More 

information on this is given in the next section. 

 

7.1.2 On-Map Diagnostics 

In addition to a Pareto plot, the Objects Evaluation screen lets you evaluate the 

map's two-dimensional fit by superimposing information on the mapped objects.  Two 

kinds of information can be displayed on the map.  The first is in terms of contributions 

to the objective function and the second is in terms of out-of-plane tendencies.  

 

7.1.2.1 Objective Function Contributions 

Each object's contribution to the objective function can be displayed three 

different ways.  First, the range of all objects' contributions to the objective 

function can be split into quarters, and each object colored according to its place 

in the range.  Black objects are the worst.  They are in the highest quarter-range in 

terms of driving up the objective function.  The second highest quarter-range is 

colored light gray, then gray, and then clear.  Sometimes a quarter range is empty.  

For instance, if all objects contribute only V1 or V2 amounts where V1 > V2, then 

the objects contributing V1 are black and the rest clear.   

 

Second, outliers can be identified.  This approach is useful if you do not 

care if an object's contribution is above or below the average, but instead care 

whether or not an object's contribution is significantly different from those of all 

other objects.  Making the determination of statistical outlier status is done using 

the usual one-tail rules that if a value is greater than 2.33 standard deviations 

above the mean then the chance that its occurrence is due to random variations is 

less than one percent, and if it is 1.65 standard deviations above the mean then the 

chance is less than five percent.  The "one percenters" are colored red and the 

"five percenters" are colored black.  It is important to note that this classification, 

while very common, is just an approximation because no evidence has been given 

that the underlying error distribution is normal.  The use of Chebyshev 

inequalities would produce more rigorous results, but they tend to be overly 

conservative and are never used to our knowledge. 

 

Third, the relative value (i.e., when all values are rescaled to a zero-to-one 

range) of an object's contribution to the objective function can be superimposed 
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on the object symbol.  If the map is uncluttered, this is a useful technique, but the 

first two techniques quickly gain superiority as the number of objects in the 

analysis increases. 

 

7.1.2.2 Out-Of-Plane Tendencies 

Instead of considering an object's contribution to the objective function, 

you might ask about its propensity to leave the plane of the map when making a 

two-dimensional analysis.  Analogously, what is its propensity to leave the line in 

a one-dimension analysis or leave 3D space in a three-dimensional analysis?  

 

Asking about out-of-plane tendencies is fundamentally different from 

asking about the object's contribution to the objective function.  It is possible that 

objects might be highly stressed (i.e., the minimum value of the objective function 

is large) even though their fit is not improved by making the map in a greater 

number of dimensions.  For instance, consider a tetrahedron sitting on a plane 

where P denotes the object at the peak.  Assume the dissimilarities between object 

P and the other three objects are maintained at equal values, and all are slowly 

decreased.  At some point the four-object map fits perfectly (zero objective 

function value) in two dimensions.  The tetrahedron will have become a planar 

figure.  If the same three dissimilarities are further decreased then the stress will 

begin to increase but the configuration of objects will not want to distort into the 

third dimension.  In this case the value of the objective function is not sufficient to 

describe the situation.  What is needed is a measure of an object's out-of-plane 

tendency (OOPT).   

 

OOPT can be calculated as follows, where we use terminology for the 

two-dimensional case.  The analogous formulas for higher or lower dimensions 

follow immediately.  Instead of writing the objective function just in terms of the 

planar coordinates (X, Y), add a perpendicular coordinate, Z, to the equation.  

Assume the badness measure is Stress, the distance measure is Euclidean, and that 

a ratio MDS analysis is of interest.  Then, for any given object, one can show that 

the first partial derivative of the objective function with respect to Z is always 

zero when evaluated at Z = 0.  The second partial derivative is not always zero, 

and therefore it controls the rate of change of the objective function at Z = 0.  That 

is, the second partial derivative provides a measure of the tendency of the object 

to leave the X-Y plane if the two-dimensional map is slowly relaxed into a three 

dimensional map.  So, OOPTi can be measured by some negative constant times 

the second derivative described above.  A useful normalization constant is the 

sum over all i and j of Wij.  By convention, Wii = 0.  The end result is the 

following formula: 

 

OOPTi = SUM(all j) (Wij (Dij-dij) / dij) / SUM(all j) Wij 

 

This formula is strictly applicable for only ratio MDS using Stress and the 

Euclidean distance measure.  However, it is a useful approximation when dij is 
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determined by any Minkowski distance measure, even including the City Block 

measure.  Moreover, if the Dij term is exchanged for the appropriate error or rank 

bound, and OOPTi is noted to be zero if dij lies within both bounds, then it is 

useful for all types of MDS analyses.  So, rather than develop separate OOPT 

equations for each MDS variation, we simply use the above equation.  In effect, 

we shift from using a derived OOPTi relationship to using the above equation as a 

definition of OOPTi. 

 

Following the approach used for each object's objective function 

contribution, OOPTi is displayed in three different ways.  First, by coloring the 

objects according to the quarter-range of all OOPT values that OOPTi falls in.  

Second, by calculating whether or not OOPTi is an outlier, as defined previously, 

and highlighting the 1% and 5% outlier objects.  Third, by displaying the relative 

OOPTi value (i.e., OOPTi divided by the maximum absolute value OOPTi) 

superimposed on the object symbol.  See Section 7.1.2.1 for the procedures that 

are used to display these categories. 

 

Finally, new users might be interested in a review of what to do if some 

objects have outlier OOPT values.  Of course, the first step is to check all input 

data for calculation or transcription errors.  Next, check to be sure the 

experimental conditions were appropriate for the outlier points.  If these checks 

fail to resolve the situation, then you are faced with a more fundamental problem.  

Other than just "living with it" you have two choices.  They are to segment your 

data set or move to a higher dimension.   

 

Removing offending data points is disagreeable to most researchers.  The 

tacit assumption is that if you just understood the underlying theory better, you 

would understand how to form a new construct that would bring the outlier into 

conformance with the other data.  Even worse, an ethical question arises 

whenever data points seem to be arbitrarily eliminated.  Nevertheless, sometimes 

it is exactly the right thing to do.  Earlier, when describing the parking lots, an 

example about dogs and cats, versus a mixture of dogs, was used.  You cannot 

know at the start of a study what you are going to find.  And, the more refined 

your study, the more likely it is that you are going to discover unanticipated 

nuances.  We recommend that you use the objects parking lot liberally to find a 

subgroup of objects that is well represented in two dimensions.  Then, repeat the 

process on the objects that were parked.  After both data sets are fully described, 

search for a theory that recombines them into a unified whole.   

 

If data segmentation is not successful, then you should consider going to a 

higher dimensional analysis.  Our advice is to go no further than three dimensions 

except with the most unusual cases.  While it is tempting to do a little "fishing" in 

higher dimensions, it is rare that one finds experienced MDS users there.  Coxon 

quotes Shepard as saying "If a solution exists, it probably exists in two 

dimensions; if it does not, then it certainly exists in three” (1982, p. 87).  There 
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have been many researchers that have discovered higher dimensional results that 

were never published because of the difficulties of fully communicating their 

nature.  Remember, object groupings must be meaningful, reasonable, and 

interpretable or they are of no value regardless of the statistical fit that has been 

achieved.  As Schiffman, Reynolds, and Young, (1981) point out, "dimensions 

that cannot be interpreted probably do not exist."   

 

 

7.2 Links Evaluation Screen 

The word "link" refers to any kind of connection or relationship between two objects.  In 

this case, a link has two aspects: the distance between the objects, and the dissimilarity given for 

the objects.  So, a link analysis involves inspecting the distances between objects in relationship 

to their underlying dissimilarities to determine if the map faithfully conforms to the underlying 

data.   

 

The Links screen provides a Shepard plot and three on-map analysis options that examine 

the state of individual links.  Each option has on-line context-sensitive information provided in a 

"Notes" text box at the bottom of the Links screen.  This option can be reached using the menu 

system or the shortcut key ctrl-L. 

  

 Printing a map with the evaluation markings on it is facilitated by having these markings 

persist after the evaluation screen is closed.  See the Section 6.4.1 for the various printing 

techniques.  After closing the evaluation screen if the Start or Continue button is pressed, or an 

open space is clicked, all evaluation markings are removed and Permap operation is returned to 

its usual mode. 

 

7.2.1 Shepard Plot 

The Shepard plot is a very good way to determine the fit of an MDS map.  For 

metric MDS it involves nothing more than plotting Dij on the X-axis and dij on the Y-axis 

(some authors reverse the orientation) and observing how the points scatter about a 45 

degree line.  For ordinal MDS, it involves finding a monotonically increasing line that 

represents the dij vs. Dij data, and then observing how the points scatter about this 

monotone line.   

 

There are three important aspects to consider when using the Shepard plot.  First, 

the data points should cluster about a central 45 degree line if making a ratio or interval 

MDS analysis, and about the center monotone line if making an ordinal MDS analysis.  

This clustering can be evaluated by R
2
, the percent of the variance that is explained by 

using the central line as opposed to that explained by using the average.  R
2
 is the 

coefficient of determination.  Second, there should be no outliers.  This is checked by 

observing if any points fall outside two standard deviation bounds that are plotted 

adjacent to the central line.  Third, there should be no evident pattern in the distribution 

of points.  If these three tests are passed, then you have a good fit. 
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A technical detail of an ordinal Shepard plot involves describing the procedure for 

defining the central monotone line.  We take the middle value to be the average of the dij 

values on the lower and upper monotone hulls.  The upper monotone hull's points are 

found by starting with the lowest Dij value (the first X-value) and defining its 

corresponding dij value to be the Y-value of the first point on the upper monotone hull.  

Then the next higher Dij is considered.  If its dij value is above that of the just previous Y-

value, then it is defined to be the next Y-value on the upper hull.  If it is equal to or less 

than the just previous Y-value, then the next Y-value is set equal to the previous Y-value.  

This procedure is repeated on up to the largest Dij value, thus defining the upper 

monotone hull.  A reverse procedure is used to define the lower monotone hull.  The 

central line is obtained by simply averaging the upper and lower values.  This central line 

provides a clear, easily calculated, representation of the ordinal solution. 

 

Beginning MDS users might consider this advice.  Making a good analysis of a 

Shepard plot is far better than comparing the objective function value to some critical 

value.  In fact, the "critical values" of Stress quoted in the early MDS literature are not 

reliable at all.  These values are fundamentally wrong, not just wrong in value.  The key 

distinction is that while they are rigorous for showing object placement improvement for 

a given problem, they are not rigorous for showing the absolute merit of object placement 

between problems.  For many years this was a sensitive point.  Applied users wanted 

guidelines to quote to support their results and they perpetuated the use of certain critical 

minimum values of Stress to confirm that a map was valid.  But, the more theoretically 

inclined researchers knew that the critical-values idea was fatally flawed.  For instance, it 

has been shown that acceptable values of Stress vary with the number of objects, the 

number of dimensions, and the nature of the error in the data.  These conclusions are 

supported by Spence and Graef (1974), Wagenaar and Padmos (1971), Isaac and Poor 

(1974), DeLeeuw and Stoop (1984), Arabie (1973), Borg and Groenen (1997, p. 38).  

Arabie (1978, p. 111) stated the point most directly in saying "Another point that in the 

interim has ceased to be arguable concerns the "good", "fair", etc. labels applied to Stress, 

irrespective of the number of stimuli, dimensionality, Minkowski metric, and other 

considerations.  Those labels . . . have since been discarded by most users as unrealistic . . 

. ."  The bottom line is, finding the minimum value of an objective function is very 

important and relative changes of the objective function between alternative mappings of 

the same data are important.  But, the exact value of an objective function does not mean 

much.  You are better advised to focus on the Shepard plot if you want to support your 

claim that you have a good MDS solution. 

 

Despite the forgoing it is likely that you will need to quote some stress values to 

get your work published.  It really doesn’t matter that these values are not reliable when a 

journal reviewer demands that they be shown and interpreted, and this is very likely to 

happen.  Our advice is to focus on the Shepard plot and then simply state the value of 

SStress and either Stress or Stress1.  As to their interpretation, you probably should quote 

Kruskal’s 1964 “rules-of-thumb” for Stress1 values are: 0 – perfect, 0.025 – excellent, 

0.05 – good, 0.1 – fair, >= 0.2 poor” and then very briefly mention that these are rough 

estimates that are known to not be applicable in all situations.  It will do little good to 
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mention that Kruskal later indicated that these Stress1 values were not reliable quality 

indicators, or to mention that there have been many studies that show better critical 

Stress1 values FOR CERTAIN SITUATIONS, or to mention that there has been no study 

that shows a set of critical Stress1 values that apply to all situations.  Our experience is 

that it is counter-productive to argue these points with those not well versed in MDS. 

 

7.2.2 On-Map Diagnostics 

 

7.2.2.1 Waern Links 

Waern (1973) suggested using a cutoff value for discarding dissimilarity 

information to simplify the job of mapping the most important structure hidden in 

a dissimilarity matrix.  She was able to reduce several complex similarity matrices 

to fairly simple maps by using only manual calculations.  Her critical values often 

fell in the 0.45 to 0.65 range.  Her method didn't preserve the metric level 

information in the data, but it did a good job of showing some of the hidden 

structure using only the simplest of procedures.  As a consequence of Waern's 

work, maps that show only some of the dissimilarity relationships sometimes are 

called Waern link maps.  Later, Kruskal and Wish (1978) suggested highlighting 

links with a similarity values greater than 0.3 to reveal "horseshoe" structures 

embedded in MDS plots.  Even later it became common to use a cutoff value of 

about 1/3 and apply it "both ways."  That is, first highlight the links in the lower 

1/3 of all dissimilarity values, and then highlight the links in the upper 1/3 of all 

dissimilarity values.  Using the "larger and smaller thirds" rule leads to two very 

simple Waern plots that test the basic plausibility of a solution.   

 

When using the "smaller third" Waern plot, the connecting lines should 

not strike out across the map.  They should fill in the small spaces between 

adjacent and near-neighbor objects.  When using the "greater third" Waern plot, 

the connecting lines should criss-cross the map, connecting only the objects that 

are farthest from each other.  These two tests, while admittedly elementary, still 

have merit.  If these Waern plots don't make sense, then further analysis is not 

needed.  It simply means that a low-dimensional representation of the 

multidimensional data is not adequate. 

 

Finally, some analysts like to use Waern cutoff values different from the 

standard upper and lower 1/3 levels.  Thus, Permap has a slider just below the 

Waern option buttons that allows resetting the cutoff to any value.  Using small 

cutoff values can lead to unexpected behavior when highly symmetric data sets 

are being analyzed.  This happens because many dissimilarity values are equal.  

Rather than make an arbitrary elimination of some links inside a group of links 

with equal dissimilarities, Permap shows all or none of a group of links that have 

equal dissimilarities.  Thus, links with equal dissimilarities will appear or 

disappear all at once. 

 

7.2.2.2 Stretched Links 
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A link's stretch is defined to be (dij - Dij) / Dij, its fractional displacement 

from its ideal length.  This quantity would be called "strain" in the engineering 

disciplines, but since "strain" has special meaning to Psychologists, the more 

generic terms "fractional displacement," "fractional stretch," or less appropriately 

but easier to say, "stretch," are used here.  Actually, as was the case with the 

badness functions that have singularities, Permap adds 0.0001 to the denominator 

to make the definition of stretch be (dij - Dij) / (0.0001 + Dij).  Thus, Permap uses 

a pseudo fractional displacement formula.  The word "pseudo" is dropped for the 

sake of brevity and is justified because the 0.0001 factor is inconsequential in 

terms of the visual display of the information. 

 

For ordinal MDS, the stretch definition is modified to be (dij - Ldij) / 

(0.0001 + Ldij) or (dij - Hdij) / (0.0001 + Hdij), depending on whether the dij value 

is below (compressed) or above (stretched) its preferred value.  See Section 5.2.2 

for a definition of  Ldij and Hdij. 

 

The fractional stretch display provides the option of showing either all 

stretched links, i.e., those with mapped distances that are longer than Dij, or just 

the links that are stretched so much that they are statistical outliers.  If you choose 

to show all stretched links, only those with more than a 0.5% fractional stretch are 

actually shown.  This is to keep from reporting links as being stretched when in 

fact their "stretch" is only "numerical noise." 

 

Outlier links are identified using the same approach outlined for objects 

described in Section 7.1.2.1, except that you seek to determine if a particular 

link's stretch is significantly greater than what can be explained by random 

variation.  This is done using the usual one-tail rules that if a value is greater than 

2.33 standard deviations above the mean then the chance that its occurrence is due 

to random variation is less than one percent, and if it is 1.65 standard deviations 

above the mean then the chance is less than five percent.  The "one percenters" 

are colored red and the "five percenters" are colored black.  As with the object 

outliers, it is important to note that this classification is not rigorous because no 

evidence has been given that the underlying distribution is normal.  It is, however, 

a useful approach for showing outliers. 

 

While outlier identification is useful, it is important to remember its true 

meaning.  It simply means that the identified link is significantly different from all 

the others.  That does not mean the link is necessarily erroneous.  If almost all 

dissimilarities are well fit, then a link with any stretch, even stretch due to trivial 

numerical noise, may appear to be an outlier.  Conversely, if a set of objects is 

very badly fit then the standard deviation of the stretch factors may be very large 

and no particular link, even one that is greatly stretched, would be identified as an 

outlier.  In both cases, the identifications are correct but misleading.  Finally, don't 

forget that the outliers are determined by fractional deviations.  The Shepard plot 

(see Section 7.2.1) shows deviations, not fractional deviations.  Thus, it is 
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possible to find that a link is identified as an outlier even though its placement on 

the Shepard plot is within the 1.65 and 2.33 standard deviation boundary lines, 

and vice versa. 

 

Another word of caution is needed if you are using something other than 

Euclidean mapping distances.  For instance, if you have chosen the City Block 

metric then all plots and stress calculations are made in terms of the City Block 

distance rather than the "apparent" distance showing on the map.  This can lead to 

results that are correct, but "don't look right" when the map and the Shepard plot 

or map diagnostics are compared.  Using the City Block metric can seldom be 

justified and beginners are advised to stick to the Euclidean distance measure. 

 

7.2.2.3 Compressed Links 

This option allows showing either all compressed links, i.e., those with 

mapped distances that are shorter than Dij, or just the links that are compressed so 

much that they are statistical outliers.  The details are identical to those described 

in Section 7.2.2.2 on Stretched Links, except the quantity (dij - Dij) / (0.0001 + 

Dij) is replaced by (Dij - dij) / (0.0001 + Dij). 

 

7.3 Attributes Evaluation Screen 

The Attributes menu provides an Attribute Fit plot and five ways to superimpose 

attribute gradient vectors on the MDS map.  Each option has on-line context-sensitive 

information provided in a "Notes" text box at the bottom of the Attributes menu screen.  

If no attributes are given in the problem definition, then the Attributes menu entry is 

disabled (grayed out).  The shortcut key for this option is ctrl-A. 

 

Immediately below the Analysis Options box is a box that lists all available 

attributes.  By highlighting a member of this box you determine which attribute is to be 

used for the Attribute Fit plot and for plotting the various on-map gradient vectors.  If 

you have more than seven attributes you will need to use the right arrow to highlight the 

“missing” attribute numbers in the Attribute Selection List box. 

 

 Printing a map with the evaluation markings on it is facilitated by having these 

markings persist after the evaluation screen is closed.  See the Section 6.4.1 for the 

various printing techniques.  After closing the evaluation screen if the Start or Continue 

button is pressed, or an open space is clicked, all evaluation markings are removed and 

Permap operation is returned to its usual mode. 

 

7.3.1 Attribute Fit Plot 

The Attribute Fit plot is a scatter plot that shows how well one or all of the 

attributes are described by an optimally oriented uni-variant gradient running 

across the map.  As usual, the coefficient of determination, R
2
, is the key measure.  

A perfect fit results in R
2
 = 1, whereas random behavior causes R

2
 to approach 

zero.   
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Each object's attribute value is represented by a point with the actual 

attribute value, after being scaled to fit the zero/one domain, plotted on the X-axis 

and its projected value, using the best-fit gradient, plotted on the Y-axis.  This 

scatter plot gives a clear visual method of determining the usefulness of a simple 

uni-variant gradient for a particular problem.  While the X-axis values are scaled 

to fit the graph, if the best-fit is very bad the projected values may be outside the 

bounds of the Y-axis.  These cases are shown with red half-circles at the upper or 

lower limits of the Y-axis.  See the following section for a discussion of the 

principles involved in defining the gradient vector. 

 

7.3.2 On-Map Diagnostics 

This section describes various biplots that superimpose a second set of 

information onto an existing MDS map. 

 

7.3.2.1 Attribute Gradient Vector 

Once a map is made, if attribute values are known it is reasonable 

to ask about the distribution of the attribute's values across the map.  In 

some cases the underlying distribution can be understood simply by 

printing the attribute values on the objects or by coloring the objects 

according to their attribute values.  Permap offers both of these methods.  

However, if there is considerable scatter in the attribute values it can be 

difficult to determine the underlying pattern.  In this case, the most 

important piece of information concerns the direction of steepest ascent of 

the attribute's values.  This gradient can be shown by making a biplot 

which superimposes a vector on the map that points in the direction that 

the selected attribute increases most rapidly.   

 

Finding the best possible gradient vector is easily done by using 

standard least-squares ideas.  Because only linear uni-variant gradient 

fields are of interest, all parallel vectors are equivalent.  Therefore, without 

loss of generality, we place the vector through the map's center point.  The 

vector is defined by the angle theta, measured counter clockwise from the 

positive X axis.   

 

Assume there is a linear attribute gradient across the map.  Let the 

ideal attribute values be represented parametrically by the formula a + b t, 

where t varies from t = 0 at the vector tail to t = 1 at the vector tip.  Actual 

attribute values, Ai, are known for each object i.  The t-value, ti, which 

corresponds to each Ai, is determined by the perpendicular line running 

from the vector and passing through object i.  One wants the ideal values 

to fit the actual values as closely as possible, so least-squares minimization 

is used to calculate the parameters a and b.  That is, a and b are chosen to 

minimize the sum of the squares of the differences between a + b ti and Ai 

for all i.   
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Having calculated a and b, one can calculate R
2
 for the vector 

specified by angle theta.  Then, theta is varied and R
2
 is calculated for 

each value of theta.  The ideal theta is the angle where R
2
 is a minimum. 

 

While the vector described above gives the "best possible" 

direction of a linear attribute gradient, this best possible value may be no 

good at all.  For instance, if attribute values are randomly assigned to the 

objects there will still be a best possible gradient vector, but it is 

meaningless.  The R
2
 value is given in the text box at the lower right of the 

screen.  It can be used to help tell whether or not the linear attribute 

gradient is meaningful. 

 

7.3.2.2 Vector and Quartiles 

In addition to showing the vector described in Section 7.3.2.1, this 

option uses the selected attribute's value to color each object.  If a value 

falls in the upper fourth of the range of attribute values for all objects, then 

the object is colored black.  Objects in the next lower quarter range are 

gray, then light gray, and then clear.  This option is useful when the screen 

is congested and reading individual values is difficult. 

 

7.3.2.3 Vector and Values 

In addition to the vector described in Section 7.3.2.1, this option 

prints the value of the selected attribute on each object.  This option is 

useful when the map has few objects that overlap each other.  Use the 

View screen (Section 4.3) to set the object diameter to accommodate 

printing the values. 

 

7.3.2.4 All Active Vectors 

This option shows vectors for each of the attributes that were used 

to determine the dissimilarities that were used to make the map.  This set 

of attributes is called the “active attributes” set.   

 

Showing all vectors at once can help determine which attributes 

are redundant and which are fundamentally different from each other.  For 

instance, if two or more vectors line up together (co-linear either in the 

same or opposite directions), then they are providing similar information 

and all but one are redundant for the given set of conditions.  It might be 

that a composite variable (a new "construct" or a linear combination) 

would provide greater insight and show less random variation because of 

the averaging affect.  On the other hand, if there are vectors that are ninety 

degrees to each other (orthogonal), then you have a good lead on assigning 

meaningful coordinates to the map.  The best of all possible worlds is 

when, after your very first MDS analysis, all of your attribute vectors fall 

into two perpendicular groups! 
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7.3.2.5 All Available Vectors 

This option is much like Section 7.3.2.4, except it includes all 

attributes, even those that were not used in making the map. 

 

This option facilitates doing "grounded research" where, for 

instance, you want the best possible synthesis of all available data, and 

you are willing to give up generalizability in order to squeeze the last bit 

of information out of your data.  If you have a low stress map with a good 

interpretation, and you are interested in evaluating additional attributes, 

then use this option. 

 

7.3.2.6 Vector Tie Lines 

To understand the construction of the gradient vector, it can be 

helpful to see the connections between the object's attribute values and the 

gradient as represented by the best-fit regression values assigned to the 

vector.  This information can be revealed by checking the "Show Vector 

Tie-Lines" box.  A perfect fit would have all tie-lines running 

perpendicular to the gradient vector. 

 

It is possible that the tie-lines will fly off the map.  Some tie-lines 

may run almost parallel to the gradient vector.  This behavior is not due to 

an error in Permap.  It can happen when the best possible fit is a very bad 

fit (say, R
2
 < 0.1).  While the domain of the independent regression 

variable is constrained to the map, if the attribute data are poorly fit there 

is no reason that the dependent regression values must be within the 

boundaries of the map. 

 

7.4 General Comments Concerning Map Evaluation 

Almost all experts in the field agree that MDS results should not pass or fail depending 

on some particular value of some particular statistic.  The first consideration is, do your results 

have face value?  This means that they should "make sense" to an intelligent but non-expert 

observer.  The lack of slavish obedience to statistical tests works both ways.  Weak statistics 

should not necessarily condemn meaningful results, and strong statistics should not be used to 

prop up frivolous results.  All results should pass the "adequacy, interpretability, stability, 

meaningfulness, reasonability, and generalizability" hurdles, and if they do then they should be 

accepted. 

 

These ideas are not new.  Torgerson (1965), and Law, Snyder, Hattie, and McDonald 

(1984) strongly emphasized that adequacy and interpretability should dominate the debate over 

the appropriateness of a MDS result.  They clearly stated that it is the researcher's responsibility 

to understand and rationally probe into the nature of the data, and that the researcher must not be 

enslaved to lesser indicators such as Stress and R
2
.  In the end, if a conflict exists between 

measures of statistical fit and a meaningful interpretation, the measures of statistical fit must 

yield.    

 



 

Page 65 of 77 

 

8.0 CONVERGENCE 
 

Selecting the Convergence menu allows you to control two parameters that are seldom 

changed.  They control operations that are going on behind the scenes.   

 

8.1 Convergence Rate 

It can happen that you get a problem whose solution is unstable from a numerical 

standpoint.  This seldom happens with "real" data sets containing a reasonable number of 

objects, but it is fairly common for test cases with highly symmetrical or uniform dissimilarities 

or for very large data sets (say, larger than 200 objects).  In such cases you can increase the 

stability of the solution process by changing the iteration step size.  This increased stability 

comes with a decrease in solution speed.  Moreover, it does not always work.  About all one can 

say is that it is worth a try if you happen onto a "bad actor" matrix or if you really have to treat 

hundreds of objects at a time (a questionable requirement).  See Section 11.0, Solution 

Difficulties, for additional ways to increase stability and for the difficulties associated with 

making MDS analyses of very large data sets. 

 

8.2 Convergence Precision 

Convergence precision is normally not a concern because the solution algorithm 

continues to run while you are studying the map and the map's precision quickly becomes more 

than even the most demanding analyst wants.  However, if you are using the Auto Start and Auto 

Repeat options to find multiple solutions starting from random initial positions, you may want to 

control the convergence precision in order to control the speed with which you scan many 

solutions.  This can be done by setting the convergence limits using the Convergence menu.  

Permap offers three convergence limits.  The first allows fast screening of data, the second 

provides a balance between speed and precision and is adequate for most situations, and the third 

is so demanding that it will usually exceed all reasonable requirements. 

 

It is possible for solutions to pulsate.  That is, the field of objects will slowly expand and 

contract and the objection will slowly rise and fall.  This happens because Permap optimizes in a 

step-by-step manner and it takes a few iterations for all parts of the problem to be equally 

optimized.  When this happens, if the convergence precision is set too low, it is possible to 

record fictitious values as being the best-found values.  Be sure to use a high level of precision 

when finalizing your work. 

 

 

9.0 SPECIAL CASES 

 

Data for some interesting special cases are built into Permap.  They include geometrically 

simple cases that illustrate certain points.  They are valuable for learning about MDS and for 

checking Permap's results against known solutions.  They also show unintuitive results and non-

convergent behavior.  The F3 function key provides a shortcut to the Special Cases selection 

screen.  
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The prime entry point to this screen was moved to a top level menu item at the request of 

users, but this screen's content logically (according to Microsoft's menu philosophy) fits as a 

submenu under the top level File menu.  Thus, an entry point is placed there too.  The two paths 

lead to the same screen.  So, the Special Cases screen can be opened using the File menu, the 

Special Cases menu, alt-C, or F3.  That ought to keep almost everyone happy. 

 

Some special cases involved dissimilarity or attribute data that are generated using a 

pseudo random number generator.  Usually you will want a new set of random numbers 

generated each time you visit the Special Cases selection screen.  However, upon occasion you 

may want Permap to use the same set of random numbers each time a special case is selected.  

The choice is made by using the Reuse Random Numbers check box at the bottom-left of the 

Special Cases election screen. 

 

 

10.0 SOLUTION TECHNIQUE 
 

How a program finds a configuration that minimizes the objective function is probably 

not of particular interest to you.  However, you must have confidence that the program does what 

it says it does.  That is, a "black box" (solution algorithm) is acceptable only if you have 

confidence that the black box works right.  This confidence usually comes either from knowing 

that the algorithm has been used successfully for a long time or from testing it against many test 

cases where the correct answer is known.  However, there should be no doubt about the fact that 

an algorithm is never proven to be correct by using these approaches.  Only a mathematical 

analysis of the algorithm can do that.  Unfortunately, the mathematical analysis of algorithms is 

so difficult, and there are so few mathematicians that specialize in this kind of analysis, that the 

rigorous approach has become an endangered species.  Fortunately, Permap passes the two 

empirical tests. 

 

For those interested in what goes on inside Permap, it uses an iterative method of solving 

the MDS minimization problem.  Basically, the method is a heavily damped form of Newton's 

method applied to one object at a time.  This approach is widely used for problems that have a 

limited amount of known structure.  It has proven effective for every "real" data set tested so far, 

but in theory this approach does have limitations.  The mathematically inclined can easily 

construct Dij matrices that are unstable.  In these cases the objects may precess, oscillate, or even 

enter the chaotic realm. 

 

If you have a problem that shows signs of instability, you can do several things to help 

Permap find the solution.  First, you can reduce the step size (Convergence menu).  Sometimes 

this is sufficient to tame unstable cases.  Second, you can apply strong mapping weights 

(Analysis Parameters/Mapping Weights menu).  De-emphasizing the distant objects will often 

reduce chaotic behavior.  This is particularly true for data sets that have very simple geometric 

arrangements (a straight line or a large matrix of objects fitting perfectly in two dimensions).  

After a stable solution is found, use the Mapping Weights shortcut button to rotate to the desired 

mapping weights.  Third, you can use one of the more stable objective functions (e.g., SStress) to 

find the solution, and then use the Badness shortcut button to rotate to using the badness function 
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that you really want.  Fourth, if you are making an ordinal MDS analysis, first make a ratio 

analysis and then use the MDS TYPE shortcut button to rotate to an ordinal analysis.  If none of 

these techniques work, and you are working with a "real" data set, please email the details to Ron 

Heady at ron@heady.us.  It will be the first case he has seen and he will enjoy working with you 

on the problem. 

 

 

11.0 SOLUTION DIFFICULTIES 

 

Local Minima 

 

The topic of local minima was touched on in Section 3.5.4 where the automatic control 

features were discussed.  The topic is important.  Difficulties associated with local minima were 

recognized by the earliest researchers (Kruskal, 1964).  They have been noted by all the major 

contributors to the applied MDS literature, and continue to merit comments in current reviews 

(Everitt & Dunn, 1995).  Still, the topic does not get the careful attention it deserves and some 

practitioners still discount its importance.  Shepard (1972) noted that except in special 

circumstances local minima have not been a serious problem.  Several other authors have 

repeated this conclusion.  Even some recent reviews (Stalans, 1995) suggest that though 

configurations due to local minima often occur, "they generally are not drastically different from 

the global minimum solution."  However, our experience is that false results due to local minima 

are not only common, they are very common.  Moreover, sometimes they are significantly 

different from the lowest stress configuration.  Borg and Groenen (1987, p. 221) back up this 

conclusion.  They point out that "MDS algorithms usually end up in local minimum" and then go 

on to note that this tendency is even greater when nonmetric MDS is used.  After using Permap, 

or any other interactive MDS program, we believe that you will see that this conclusion is 

correct.  You might even come to wonder how the early MDS researchers, who had very limited 

computational facilities, no real-time interaction, and no built-in graphical capabilities, could be 

so confident that their results were indeed representative of global minima. 

 

Most early MDS programs (and even a few currently available programs) contained 

subroutines that would choose smart (sometimes called rational) starting points to combat the 

difficulties associated with local minima.  Torgerson (1952, 1958), published a method that 

could be used to find a good set of starting points.  Twenty years later Arabie (1973) and Kruskal 

and Wish (1978) were arguing for an alternative approach.  Both of their papers suggested that it 

would be better to use random starting points.  Kruskal and Wish limited their advice to when a 

solution has a "suspiciously large" stress value, although they did not suggest how suspiciously 

large values should be recognized.  But, regardless of this advice most MDS programs continued 

to use smart starting points.  In our opinion, these smart starting points are a liability rather than 

an asset.  We believe they should be avoided.  This is because even though smart starting points 

often lead to finding a global minima, when they fail you do not know that they have failed.  You 

simply get the same wrong solution over and over.  Obviously, the alternative of using random 

starting positions requires far more computation.  So, historically, the decision has been between 

being fast and usually right, or being slow and almost certain that you are right.  This choice was 

difficult for many years.  Fortunately, computer speeds now have increased to the point that the 
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original argument is moot.  As a result, the need to be sure of the nature of your solution 

dominates and most MDS programs now provide for easily solving problems using many 

different random starting points.   

 

Because of the importance of the topic of smart starting points, we digress to offer new 

MDS users a bit of historical perspective.  Arabie's (1973) comments against using smart starting 

points were not well received by many MDS researchers.  For instance, Clark (1976) and Spence 

and Young (1978) criticized Arabie for not providing any systematic comparisons between 

multiple-start and rational-start approaches.  Arabie (1978) refuted the arguments against using 

random starting points and explained the difference between having theoretically correct starting 

points and having state-of-the-art starting points.  Nevertheless, the argument continued.  In 

1992, Davison (p.100) concluded that the multiple-start approach was ". . . expensive, time 

consuming, and largely untested in a systematic way."  Even as late as 1997, Borg & Groenen (p. 

222) were still concerned about the computationally intensive aspect of the multiple-start 

approach.  As the body of MDS literature matured, however, Arabie's concerns proved to be 

valid and the debate amongst experienced MDS users now has faded away.  However, Cox and 

Cox, in a draft of a journal submission (see the web site http://www.ncl.ac.uk/mds/) show that, at 

least in terms of beginning MDS users, the problem is still with us.  They refer to misleading 

comments in SAS and SPSS manuals, and the fact that these programs do not make it easy to 

make the needed randomly generated replications.  They conclude that beginning MDS users are 

still in danger of falling into this old trap.  We agree and strongly recommend that you use 

Permap's Auto Repeat and Auto Stop features and make many tests before you conclude that you 

have a global minima.  For first-hand experience with the problem, load the data in 

EXAMPLE_E.txt.  These are the data Cox and Cox used to illustrate the ease with which local 

minima can be mistaken for global minima. 

 

Degenerate Solutions 

 

A note on degeneracy is in order.  Over the years quite a few MDS articles have referred 

to the problem of avoiding degenerate solutions.  A degenerate solution is a rigorous solution 

from a mathematical viewpoint but it is not meaningful in terms of the reality that is being 

modeled.  Degenerate solutions generally take the form of all objects being in a straight line or 

clustered on top of each other.  When first writing Permap we planned a subroutine to combat 

this possibility.  However, we found that it was not needed.  Evidently, some of the early MDS 

computer programs used either very susceptible algorithms or exceedingly unrealistic starting 

points.  While Permap can produce degenerate solutions, they are very rare unless you make an 

effort to find them. 

 

For teaching purposes, it is useful to be able to demonstrate the existence of degenerate 

solutions.  Because Permap loads objects in a straight line, and because degenerate solutions 

often take the form of a straight line, demonstrating degenerate solutions is easy.  After loading a 

new problem, click Continue instead of clicking Start.  This causes Permap to start searching for 

a solution using the existing straight line positions instead of random positions.  Because a 

degenerate solution is usually nearby, the objects may simply slide over into their degenerate 

solution positions.  If you click Jiggle the solution will immediately evolve into a meaningful 
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solution.  But that does not really show the fragile nature of some degenerate solutions.  To show 

just how unstable these degenerate solutions can be, click Stop and drag an object just very very 

slightly out of the horizontal line of objects.  Then click Continue, and unless you have made an 

extremely small adjustment, the objects will immediately fly off to a more meaningful solution.  

Interestingly, this technique works with almost any distance function, badness function, and 

dissimilarity matrix.  Another degenerate solution can be found by imposing extreme boundary 

conditions.  After solving a problem close the constraining boundary while the solution continues 

to run.  Do this by clicking the Boundary shortcut.  If it is not present on the main screen then 

use the View menu to add the it to the list of active controls.  As the circle shrinks toward a zero 

radius the objects are pressed together until they are superimposed upon one another.  Then, with 

the solution continuing to run, open up the boundary.  The objects will stay in their superimposed 

"solution."  A jiggle will quickly show that this degenerate solution is meta stable. 

 

Very Large Data Sets 

 

 Finally, it is important to discuss problems with a large number of objects.  Everyone 

wants to treat all of their objects at once.  That is natural, but not always a good idea.  Permap's 

upper limit on the number of points was recently increased from 200 to 1000 because users were 

requesting it and because newer computers have so much RAM and such high CPU speeds that 

static memory can be used (to increase speed) without the operating system resorting to the slow 

"memory swapping" approach to memory management.  But there are two difficulties with 

analyzing problems having many objects.  First, large problems can become unstable because the 

solution is controlled by insignificant figures.  This can be helped by using a small step size 

option in the Convergence menu, but when the problem gets really large even this may not be 

enough.  It all depends on the nature of the data.  But even if the stability problem is manageable, 

the "solution" almost certainly is only one of thousands (millions?) of local minima.  Densely 

packed objects can take on almost any number of arrangements all of which have essentially the 

same objective function value.  These differences must not be taken seriously even though they 

seem to be significant to the untrained eye.  If you use many points you must shift to looking 

only for the "big blobs” and pay no attention to the fine detail.  This is not a defect in Permap.  It 

comes from the "curse of dimensionality."  MDS programs that don't reveal as much of the inner 

workings as Permap have the same defect, it is just invisible.  A better approach than treating all 

points at once is to find high concentrations of objects (“blobs”) and analyze each separately, and 

then, perhaps, replace them with archetypical objects based on the common properties of the 

objects in the center of the concentration.  Then, conclusions are drawn from the arrangement of 

the archetypical objects.  The key point is that the detailed arrangements between close objects 

can, and usually is, overridden by the requirements of the relationships of the many many distant 

objects. 

 

12.0 Permap HISTORY 
 

Permap was developed by Professor Ronald B. Heady of the University of Louisiana at 

Lafayette, and Professor Jennifer L. Lucas of Agnes Scott College.  An early version is described 

in Heady and Lucas (1996).  The current Windows-based version of Permap is a descendant of a 

DOS-based version which was written in 1993-94 using a Windows-emulating program 
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(VBDOS).  In 2000, Permap was rewritten for the Windows operating system to further increase 

its interactivity, add new features, and remove certain memory restrictions.  

 

Professor Tony Coxon and his classes have provided valuable input that has speeded 

along Permap's evolution.  Many thanks to them, and to all the others that have sent in 

suggestions for improvement or words of encouragement. 

 

 

13.0 GETTING HELP 
 

There are three ways to get help.  The first is to press F1 or enter the Edit/Edit Help File 

menu to read the brief on-line help file that was described in Section 4.2.2.  This file is more of a 

short reminder list than a full summary of how to use Permap.  It contains some of the 

operational sections of this manual.  The second is to refer to this manual.  The third is to email 

Ron Heady at ron@heady.us.  He is more than happy to help you understand Permap's 

idiosyncrasies, but he cannot do much about specific hardware problems. 

 

 

14.0 LEGAL NOTICE 
 

Permap, the computer program, is copyright 1993-2010 by Ronald B. Heady.  It is 

declared to be academic freeware.  You have permission to use Permap as much as you like for 

any academic or personal use.  You may make and give away as many copies of Permap as you 

like as long as you do not alter the program or charge for the copies beyond the cost of the media 

and a nominal handling fee.  Permap is offered with no guarantee or warranty.  It has no 

assurance of product support.  

 

This Operation Manual is copyright 1993-2010 by Ronald B. Heady.  You may make as 

many copies of this manual as you like for any academic or personal use as long as you do not 

alter its content or charge for the copies beyond the cost of the media and a nominal handling 

fee.  The accuracy or usability of the contents of this manual is not guaranteed in any way. 
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APPENDIX I 

DATA FILE KEYWORDS 

 

To be recognized, a keyword must be the first entry on a line.  Keywords are usually 

capitalized to make them standout, but any mixture of upper and lowercase letters is acceptable. 

 

Keyword  Purpose    Example Use  Comment 
NOBJECTS  Set number of objects   NOBJECTS=...  1000 maximum 

NATTRIBUTES  Set number of attributes   NATTRIBUTES=... 100 maximum 

TITLE   Set a title line to be shown on output TITLE=...  65 char. max 

MESSAGE  Set a message to be shown on output MESSAGE=...  65 char. max 

SUBTITLE  Set a subtitle line to be shown on output SUBTITLE=...  98 char. max 

SUBMESSAGE  Set a submessage to be shown on output SUBMESSAGE=... 98 char. max 

DISSIMILARITYLIST Announce that dissimilarity data follow 

SIMILARITYLIST Announce that similarity data follow 

ATTRIBUTELIST Announce that attribute data follow   

LOCATIONLIST Announce that initial positions follow     

WEIGHTLIST  Announce that weight data follow     

NA   A missing dissimilarity value  ..., NA, ...  or ..., na, ... 

 

 

The following keywords are of a different nature from those shown above.  Normally, they are 

not used.  In fact, if they are ever used it is almost certainly in a classroom.  These keywords are 

used to control start-up details of the program.  They override default values and force Permap to 

start with specific settings.  Thus they provide a way for a teacher to provide a data file that also 

controls the type of analysis, or, for a "save solution" file to provide all information needed to 

immediately restart the analysis from the conditions existing when the file was saved.   

 

These keywords are entered with a following equal sign and a number chosen from those shown 

after each option.  For instance, if the data file has STARTBadnessFunctionNum=1, then Permap 

will start with the SStress badness option being selected 
 

STARTMDSAnalysisTypeNum=0 

              0 Ratio, 1 Ratio + Bounds, 2 Interval, 3 Interval + Bounds, 4 Ordinal 

STARTBadnessFunctionNum=0 

              0 Stress, 1 Stress1, 2 SStress, 3 Multiscale, 4 Fractional 

STARTDistanceFunctionNum=0 

              0 Euclidean, 1 CityBlock, 2 Minkowski 

STARTMappingWtFunctionNum=0 

              0 None, 1 Weak, 2 Linear, 3 Strong, 4 Adjustable 

STARTAttributeFunctionNum=0 

0 COS(alpha), 1 Euclidean, 2 City Block, 3 Guttman 

4 Pearson, 5 Spearman, 6 Nominal SMC 

7=Jaccard, 8=Gower/Russell/Rao, 9=SMC/Sokal/Michener 

10=Hamman, 11=Yule, 12=Askin/Charles, 13 Dissimilarities in file 

STARTAttributeDataTypeNum=0 

              0 Ratio, 1 Interval, 2 Nominal, 3 Binary Nominal, 4 Unknown 
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STARTObjectIDMethodNum=0 

0 Number, 1 Name, 2 None 

STARTDimensionsNum=2 

1 One Dimensional, 2 Two Dimensional, . . . , 8 Eight Dimensional 

STARTConstraintRadius=1.0 

 A number from 0 to 1, indicating the radius of the constraining boundary 
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APPENDIX II 

EXAMPLE INPUT DATA 

 

The following provides an example of a working data file.  To be readable by Permap this file 

must be stored in an unformatted text format.  Therefore, if you want to actually run this data, 

copy and paste it into a word processor and then save the file in ASCII or ANSI format.  Be sure 

that you do not introduce any "strange" characters into the text file (sometimes WordPerfect will 

add an invisible termination character at the end of a file, and this can cause trouble).   

 

All lines that do not start with a keyword or a number are comment lines.  Comments are 

disregarded by Permap. 

 

This example uses data from Kaufman and Rousseeuw's book "Finding Groups in Data" that 

gives the subjective dissimilarities between eleven sciences as seen by fourteen postgraduate 

economics students from several different countries. 

 

****************** Start Copying Just Below Here ******************* 

 

MESSAGE=Differences Between the Sciences 

 

NOBJECTS=11 

 

DISSIMILARITYLIST 

Astr,  0 

Biol,  7.87,  0  

Chem,  6.50,  2.93,  0       

CSci,  5.00,  6.86,  6.50,  0 

Econ,  8.00,  8.14,  8.21,  4.79,  0 

Geog,  4.29,  7.00,  7.64,  7.71,  5.93,  0 

Hist,  8.07,  8.14,  8.71,  8.57,  5.86,  3.86,  0 

Math,  3.64,  7.14,  4.43,  1.43,  3.57,  7.07,  9.07,  0 

Medi,  8.21,  2.50,  2.93,  6.36,  8.43,  7.86,  8.43,  6.29,  0 

Phys,  2.71,  5.21,  4.57,  4.21,  8.36,  7.29,  8.64,  2.21,  5.07,  0 

Psyc,  9.36,  5.57,  7.29,  7.21,  6.86,  8.29,  7.64,  8.71,  3.79,  8.64,  0 

 

****************** Stop Copying Just Above Here ******************* 

 

The data can be separated with space(s), a comma, or both. 

If there are missing data, they should be entered as "NA" or "na." 

 

The leading names shown above are optional, but if used they must start with a letter, must not 

start with NA or na, and must not contain non-alphanumeric characters. 

 

If you want to force Permap to start an analysis using certain object locations, use the 

LOCATIONLIST keyword followed by a set of locations.  When Permap writes out a solution to 
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the PermapBestSolnFound.txt file, it puts these locations in the file.  This means that you can use 

the output file as an input file and have the analysis begin exactly where you left off.  The 

number of lines of data must equal the NOBJECTS setting.  Leading plus signs are optional on 

attribute or dissimilarity data.  If desired, they can be used to improve the readability of the input 

file.  If you enter a location list, Permap will automatically set the number of dimensions used in 

the analysis to equal the number of dimensions implied by the location list. 

 

LOCATIONLIST 

 -0.5262  -0.0030 

 +0.2297 -0.3264 

 -0.0307  -0.4252 

 -0.2926 +0.1243 

 -0.1282 +0.5070 

 +0.1829 +0.4083 

 +0.4286 +0.4962 

 -0.3222  +0.0142 

 +0.2130 -0.4146 

 -0.3328  -0.2349 

 +0.5785 -0.1459 
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